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1 Basic Prereqs

In this section I’m going to write some basic notes on the general ideas of Computer Vision and
Machine Learning that one should know before going any further in the notes.

1.1 Basic Prereqs

The basic pre-reqs that must be known to understand these notes are a fundamental under-
standing of linear algebra, a somewhat basic understanding calculus (and multivarius calculus),
and common sense. Within linear algebra, the following topics should be known very well:

• Vectors

• Matrices

• Transformations

• Eigenvectors, Eigenvalues, and Spectral Decomposition

• Projections to Subspaces

• Column-Spaces, Row-Spaces, and Null-Spaces

A background in things such as statistics, programming, and algorithmic implementation is
helpful. Many math that is “too advanced” is often explicitly stated as ignored or purposefully
simplified for sake of keeping the notes easier to understand. At the end of each section there
are resources to better understand subjects! Everything else in this section are things that can
come up later down the line that will be referred to – many of these topics don’t really come up
until the later sections, however!

1.2 Principal Component Analysis

Principal Component Analysis (PCA) is a key tool in order to reduce the dimensions of some
data based on what is presumed to be noise. We first need to define the idea of covariance as
the operation which computes the product of the differences of means of two random variables
at index i. We can formalize this as:

cov(X, Y ) =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

As an aside, this is also equal to the below definition using expected value, and is given as an
exercise to the reader to prove except with the change of replacing n in the denominator with
n− 1:

cov(X, Y ) = E(XY )− E(X)E(Y )

The change of n to n− 1 is to make values easier to work with and “more accurate” for a lack
of a better term. Do not worry about this for sake of these notes. Let’s define the covariance
matrix as the matrix C such that:

C(m)(n) = cov(Xm, Xn)

In other words, C is also defined as:

Σ =


Cov(X1, X1) Cov(X1, X2) · · · Cov(X1, Xn)
Cov(X2, X1) Cov(X2, X2) · · · Cov(X2, Xn)

...
...

. . .
...

Cov(Xn, X1) Cov(Xn, X2) · · · Cov(Xn, Xn)
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It is not difficult to see that given a data matrix X where the columns of X are defined as input
vectors, we can define the covariance matrix in the following way:

Cxx =
1

n− 1
XXT

Note that we are assuming that X is composed of vectors that are already 0-meaned in order
to simplify the data. We can observe that Cxx is guaranteed to be a symmetric positive semi-
definite matrix, and can therefore construct a diagonalization that consists of an orthonormal
basis:

Cxx = WDW T

WW T = Id

Knowing the properties of covariance matrices, the eigenvectors capture, in order, the most
amount of variance in the data. The eigenvectors show where such variance in the data is. Note
to reader that this is an optimization problem provable using Lagrange Multipliers.

Y = WX

The above linear transformation based on W from the diagonalization of the covariance matrix
is an orthonormal change-of-basis that maximizes the variance in the data. Since the variance
is organized by eignevalue, we can perform a change of basis on X using W and note that the
columns ofW are the principal components. We can pick the “component” with the least change
in the data, denoted as aforementioned by the lowest eigenvalue, and “remove” it from the data
in order to perform dimensionality reduction.

1.3 Singular Value Decomposition

Note that although I brought up PCA using the EVD techniques (Spectral Decomposition),
it is extremely common, and probably more practical, to introduce this with Singular Value
Decomposition (SVD). EVD is the basic building block with which we build SVD, and to learn
more about it you can take a look at the following Youtube Series by Steve Brunton

Before I begin, let me quickly define what orthogonality is in the context of matrices (this
will come up in the section on the Discrete Fourier Transform as “unitary”). Any matrix which
satisfies the following condition is orthogonal:

MMT = I

This is equivalent to saying an orthogonal transformations inverse is its transposition. It
also means that all the column vectors are perpendicular to eachother and that their magnitude
is 1. Let’s define the singular value decomposition of X:

X = UΣV T

We can define Σ through the singular values in the following way:

Σ =



σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr
0 0 · · · 0
...

...
...

0 0 · · · 0
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Note that the singular values are arranged in decreasing order such that σ1 ≥ σ2 ≥ σ3 and
so on so forth. We also say that the column vectors of U are known as the left singular
vectors and the column vectors of V as the right singular vectors. Recall that singular value
decomposition is UΣV T so the column vectors of V are actually represented as row vectors in
the decomposition! I won’t go too far in depth in how to compute the left and right singular
vectors, but for a quick overview:

• Singular Values - these are related to the eigenvalues of the symmetric matrices AAT

and ATA.

• Singular Vectors - these are related to the eigenvectors of the symmetric matrices AAT

and ATA

We pick which one to use based on the dimensions of the initial matrix A. We want to use the
eigenvectors and eigenvalues of the matrix with higher dimensions to get all possible information.

This applies to correlation and principal components analysis because if we factorize the data
matrix X into UΣV T , then XXT ends up becoming V Σ2V T . This means that the result is an
eigenvalue decomposition with a matrix in the center of the singular values squared – because of
how the singular value decomposition is defined, we can simply just take the first n of the vectors
in the resulting covariance matrix and leave the others because the others are less “important” or
contribute less to the variation of the data. This means that using singular value decomposition
gives us key insight to what the directions or correlations of the data are which we can use
when trying to compress. In fact, the SVD and PCA are almost the same exact thing
– so much so that the PCA is called the mean-centered SVD because we subtract
the mean of the data when computing the PCA.

1.4 Convolution

The continuous convolution operator (defined as convolving two functions) is the following:

(f ∗ g)(t) =
∫ ∞

−∞
f(x)g(t− x)dx

The discrete convolution operator is the following:

(f ∗ g)(t) =
∞∑

x=−∞

f(x)g(t− x)

The operation of convolution is linear, and shift-invariant (which is why it is also viewed as a
LSIS linear shift invariant system). This result is notable because integration and summation
are also both linear and shift-invariant operations. Convolution is also commutative and
associative. Two dimensional convolution is defined as the following operation:

g(x, y) = (f ∗ h)(x, y) =
∫∫ ∞

−∞
f(u, v)h(x− u, x− v) dudv

g(x, y) = (f ∗ h)(x, y) =
∞∑

u=−∞

∞∑
v=−∞

f(u, v)h(x− u, x− v)

Note that for convolution to be defined, for lack of a better terms, the functions must be
“bounded”. If the following:

∞∑
m=−∞

f(m) = C
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∫ ∞

−∞
f(m)dm = C

This is important because otherwise, convolution will not be defined and will tend toward infinty
each time. If one of the series/integrals do not converge or decay to 0 fast enough, that produces
a problem in practical considerations because convolution loses a lot of meaning. Particularly
for computer vision, the discrete versions of these convolutions are significantly more important
because images are often represented as matrices. A couple of important facts to know (which
you might not yet understand) about convolution:

• Convolution in the spatial domain is equivalent to multiplication in the Fourier/frequency
domain

• Convolution in the Fourier/frequency domain is equivalent to multiplication in the spatial
domain.

These will be briefly discussed in the Image Processing section, but if you would like thorough
proofs of these, please look online.

1.5 Pinhole Projection

This is important to have an understanding of what an image, at it’s core, is. The main paradigm
for cameras and photo-taking is the pinhole camera model (do NOT confuse with pigeonhole
principle which is different). The pinhole model works by taking a small point (mathematically
speaking, this would be infinitesimally small), and using it as an aperture to let light pass in.
This projection is basically how we formulate the idea of taking a 3d image and making it appear
2d in a camera.

FPCV Pinhole and Perspective Projection at 2:56

Notice the logic of similar triangles which can tell that the corresponding 2d coordinate of a 3d
coordinate (X, Y, Z) → (x, y) given f is the focal distance as mentioned above is:

x = f
X

Z

y = f
Y

Z

We can also compute magnitude of the coordinatea from the center of the imagep lane explicitly
(which I won’t do here, but the main conclusion is obvious) and determine:

m =
f

z0
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The importance of this result is that it suggests magnification is inversely proportional to the
distance (which is z0) – this means that a part of an image that is “less magnified” means that
part of the image is likely farther away.

Let’s also introduce the notion of the vanishing point which is where the image vanishes
– this normally is the center of the image but it’s where all the lines of depth in an image
converge.

Galleria Espalda in Rome created by Francesco Borromini

The vanishing point for this image is the statue in the center – see how all the lines that appear
going “into” the image stop or converge at the statue. Please note that all parallel lines in
an image have the same vanishing point. That is to say that if the image has non-parallel
lines, there can be multiple vanishing points, and that parallel lines will always have a single
vanishing point. This vanishing point is located where the line in that parallel direction goes
through the pinhole and pierces the image plane.

FPCV Pinhole and Prospective Projection at 13:38

Note that it’s also very important to care for the pinhole size. Although mathematically we
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want the pinhole to be as tiny as possible, practically speaking this would mean no light gets to
the image through the aperture. If the pinhole is too big, normally too much excess light gets
in the image (creating a blurry effect) while if the pinhole is too small, diffraction can occur.
Diffraction is an idea from wave physics where light, represented as a wave, bends around the
aperture and less light is in the image – this is a result of the single-slit experiment. Let’s discuss
the ideal pinhole diameter:

d ≈ 2
√
fλ

f : effective focal length , λ : wavelength

We normally pick the wavelength to be the average wavelength of the image, or we can ballpark
it to around 550nm and pick the ideal pinhole so that we make the image as clear as possible.
Now, although this mathematical model for cameras works great at an abstract level, we need
to introduce lenses to make it practical.

1.6 Image Formation thru Lenses

Recall that the pinhole projection works great, but it often isn’t very practical because although
we want all light to pass through a single “pinhole” and cross through to an image, that just
means not enough light is produced. We’ll get a very dark image! So, we normally use lenses
to gather more light.

FPCV Image Formation using Lenses 1:16

Let’s take a look at the above image to understand more about lenses! In a pinhole projection
model, the only ray that would have made it to the image plane would be the ray crossing
through the center projection point. Let’s analyze lens formulation by using the Gaussian
Lens Law:

1

i
+

1

o
=

1

f

We can also use similar triangles to define the magnification (like before) as:

m =
hi
h0

hi is defined as the image height in the resulting image while h0 is defined as the image height
in the initial image. Because lenses invert the image, these two heights are normally measured
in opposite directions. We can also introduce the two lens system which allows us to place lens
sequentially in order to get a better type of image. Do note that this type of technology is used
in DSLR cameras and many iPhones – if we have an even number of lenses, note that the image
isn’t inverted. The two lens system also enables us to have the “zooming” effect. Read more
about it in the Lens Formation video by FPCV at 5:05.
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FPCV Image Formation using Lenses 9:09

Let’s introduce the idea of aperture – aperture is how “open” the lens is to taking light.
In the pinhole projection model, we can assume this to be, practically speaking, how large the
pinhole is. Let’s define aperture as d, and f as the focal length which is a constant.

d =
f

N

N is defined as the f-stop (or f-number, f-ratio) of the lens. The aperture and f-stop have an
inverse relationship based on the focal length (where the lens is relative to the resulting image).
This means that as the aperture/window of light gets smaller, we get less light in the
image, and the f-stop increases.

One of the prices we pay for using lenses is the idea of lens defocus. When we use lenses,
only one plane will be totally in focus with the surrounding areas getting less and less in focus.
Note that in the above image, only objects at a certain particular distance are actually going
to be rendered as a single point in the result. Other points at different positions are going to
be blurry because they won’t be able to intersect at the image plane. The above image depicts
the case where things are in front of the focus plane, but in the opposing case where things are
behind the focus plane, the resulting rays will cross eachother and create a different blur circle.
This blur circle is computable through similar triangles and is proportional to diameter of
aperture and inversely proportional to f-stop. Note that we can also change the focus of
an image by zooming because that changes the focal distance.

1.7 Depth of Field

This concept is very similar to what was mentioned above, but requires some more nuance in
understanding the notions of digital images. We normally don’t care if the blur circle is smaller
than a pixel because then it is still in focus for our image. Normally speaking, we can achieve a
concept called hyperfocal distance which is the distance at which everything beyond a certain
plane in an image appears in focus because its blue circle is less than the width of a pixel. It
can be calculated using the following formula:

h =
f 2

Nc
+ f

We can define c as the max blur size or the width of a pixel, N as the F-Stop number (basically
dependent on the aperture width), and f as the focal length. Note that f and c are fixed
parameters so the F-Stop is the only changeable parameter here which means we can adjust the
f-stop so any point at h distance or further is in focus. Let’s quickly discuss some properties of
lenses:

• Blocking the lens - recall that lenses don’t necessarily take light solely from one particular
area. It isn’t the same as blocking something in real life – your lens is capable of getting
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information from light rays all around its physical surface area. This means that dust
normally doesn’t impact the lens significantly.

• Tilting the lens - this basically takes the plane of focus and warps it. It has a lot of
uses in places where you want the plane of focus to not be parallel to the image plane but
instead want it to be at an angle. It’s often called a tilt camera and the mathematical
principle behind this is called the Scheimpflug Principle.
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2 Fourier Analysis Topics

This section is the closest to the concepts you would learn in your average DSP course you take
in a math department. Material from this section is mostly taken from Czaja’s MATH416 Notes,
and Steve Brunton’s Webseries and Textbook on Fourier-Driven Data Analysis.

2.1 Discrete Fourier Transform

WARNING: there are different versions of the DFT and CFT used in the notes,
some are normalized and some aren’t, most of the properties I talk about apply to
BOTH transforms though and I distinguish when that isn’t the case.

More important than the mathematics behind this transform, which I will get into, is under-
standing the meaning of this transform. The DFT is a transform which takes in a vector in the
time-space and converts it into the frequency-space. Broadly speaking, it takes in a vector and
composes it of individual discrete sinusoidal (sin and cos) functions that represent the initial
signal. It can be defined the following way:

X[k] =
N−1∑
n=0

x[n]e−i 2π
N

kn, k = 0, 1, 2, . . . , N − 1

Let us go through each part of the equation and define what they represent:

• X - the upper-case X represents the output of the Fourier Transform as a vector

• N - represents the dimension of the input vector

• n - represents a variable that is the index of every element of the input vector

• k - represents the index of the Fourier transform vector and varies from 0-N-1 because a
Fourier transform on a vector of “N” elements will output another vector of “N” elements

Understand that we can use Euler’s identity to determine: eix = cos(x) + i sin(x) which is how
the sinusoidal functions are created. Also note that the integral Fourier transform is very similar
to the DIscrete Fourier Transform simply replacing the summation with an integral instead and
using a different normalization procedure (fraction in front):

F (t) =
1√
2π

∫ ∞

−∞
f(x)e−ixt dx

Note that given the DFT, we can also use the definition of a matrix to reformulate the DFT
formula given above as the following matrix:

F (m)(n) = e−imn 2π
N

Note that although the above definitions are valid, many (including these notes) often normalize
the DFT by a division of

√
N in order to preserve the unitarity of the DFT matrix so the final

result of the DFT matrix is the following (unitarity is discussed later):

F (m)(n) =
1√
N
e−imn 2π

N

There are several important properties of the DFT:
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• Unitarity - this is an extension of the idea of orthogonal matrices which satisfy the
following X:

XX̄T = Id

X̄TX = Id

This is provable by taking an individual column of the DFT Matrix “n” and dotting it
with itself and getting 1 and dotting it with ANY other column vector and getting 0. For
a thorough proof of this, check M416 Notes on the DFT section (end of page 48 to page
49).

• Symmetric Matrix - note that:

F (m)(n) = F (n)(m) =
1√
N
e−imn 2π

N

Thus, we can claim that the matrix is symmetric and therefore is equivalent to its trans-
position.

• Inverse is Conjugate - note the following:

FF−1 = F ∗ F̄ T = Id

F̄ T = F̄

F−1 = F̄

• Parseval’s Theorem and Plancherel’s Theorem - this isn’t particularly important to
computer vision, but this is very commonly associated with the DFT and Fourier Trans-
forms in general so I want to mention it. Proof isn’t given but this is straightforward to
prove:

∞∑
n=−∞

|x[n]|2 =
N−1∑
k=0

|X[k]|2

Note that Plancherel’s theorem is similar, but rather defines a relationship for the inner
product of two vectors as the inner product of the DFT of the two vectors. These properties
aren’t that particularly useful for CV, and don’t give that much more context than the
properties previously discussed, but they are so commonly associated with the DFT that
any textbook/notes that introduce the DFT will mention them.

• Periodicity: this gets a bit unnecessarily mathy feel free to skip
An important observation in the definition of the Fourier transform for both the real and
continuous case is the periodicity of the purely imaginary exponent. I will show this for
the DFT, but this same approach easily translates to the CFT:

X[k] =
N−1∑
n=0

x[n]e−i 2π
N

kn, k = 0, 1, 2, . . . , N − 1

Note that if instead of “k”, you input “N+k”, you end up getting the following result:

X[N + k] =
N−1∑
n=0

x[n]e−i 2π
N

(N+k)n, k = 0, 1, 2, . . . , N − 1

Take a look at the exponent of the e within the summation:

−i2π
N

(N + k)n =
−2πin(N + k)

N
= −2πin− 2πikn

N
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However note that since n ∈ Z, we are guaranteed that the 2πin doesn’t change the output
of the exponent since:

ea = ea+2πi

Thus we conclude that:

X[k] = X[N + k] = X[k mod N ]

Using this information, we can determine some more “mathematical” properties about the
DFT. These properties end up helping us when constructing the Fast Fourier Transform,
and can allow us to express initial inputs and outputs of the Fourier transform as peri-
odic infinite sequences which makes handling them (mathematically speaking) easier in
particular situations.

A quick note on the 2 dimensional Discrete Fourier Transform: I won’t really get into
proving this, but applying the DFT to a matrix simply involves applying the DFT to each of the
column vectors, and then applying the DFT to each of the row vectors when the new column
vectors (output of first DFT) are completed and combining it all together. This means that
applying the DFT to matrices or images is actually relatively straightforward which is another
reason why it is so preferred. But, there are still techniques to make it’s implementation faster...

2.2 Fast Fourier Transform

Another important topic for those more interested in DSP (as opposed to necessarily computer
vision) is the Fast Fourier Transform (stylized FFT). The most common approach to the FFT is
the Cooley-Turkey method and it relies on the Danielson-Lanczos lemma shown without proof
below (look at the MATH416 notes to see the proof):

Let N be a positive even integer and define the following sequences E and O:

O(n) = v(2n), n ∈ Z

O(n) = v(2n+ 1), n ∈ Z

Then, for all m = 0, ..., N − 1,

FN(v)(m) = FN
2
(E)(m) + e

−2πim
N FN

2
(O)(m)

Be very careful to note that FN(v)(m) isn’t the DFT but rather is defined as the m-th coefficient
of the DFT of vector v:

F (v)(m) =
1√
N

N−1∑
n=0

v(n)e−2πimn
n

In order to construct the Fast Fourier Transform, we note the important property that a DFT
of a vector of length 1 is itself (because m = 0, n = 0, and N = 1 so 1√

N
= 1)

1. First split the input vector into two sequences O and E.

2. Compute the DFT of O and E by recursively applying the Danielson-Lanczos lemma, and
use the Danielson-Lanczos lemma to combine the two to get the DFT of V .

3. Recursively compute the DFT of vector V until it becomes length 1 at which point, use
the fact that the DFT of a vector of length 1 is itself.

This process is very similar (to those whom have taken an algos course prior) to MergeSort.
Instead of computing an O(n2) operation through manual computation, we split it into log n
computations which result in an O(1) output, and run an O(n) operation on the resulting
computations by combining. Thus, we have been able to reduce the DFT at O(n2) to the FFT
at O(n log n).
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2.3 Other Important Frequency-Scale Transforms

There are many other important transforms of different types that are also used for digital signals
processing (that fall in a similar umbrella as the DFT - some different transforms are discussed
later!) but I don’t think are that important for the average person interested in computer vision
so I’ll briefly mention them:

• Discrete Sine Transform
This transform uses the sin function. It is a real (NON-imaginary) transform that instead
of returning sinusoidal functions through complex exponentials, returns them through sin
functions of varying frequencies and amplitudes. There are mostly 4 types, with type 1
being defined the following way:

S(m,n) =

√
2

N
sin(

πmn

N
)

Note that this is not only a unitary matrix, it’s entirely real and symmetric which means
it satisfies S2 = Id. Other variants of the DST aren’t necessarily unitary/orthogonal and
symmetric so be careful.

• Discrete Cosine Transform
This transform uses the cos function. It is also a real (NON-imaginary) transform. There
are mostly 4 types with type 1 being defined the following way:

C(m)(n) = β(m)β(n) cos(
πmn

N
)

Note that the β function is defined in order to normalize the DCT. This particular trans-
form is also unitary, real, and symmetric.

• Discrete Harley Transform
This is very similar to the Discrete Fourier Transform except avoids the need for complex
numbers entirely and is defined the following way:

H(m)(n) =
1√
N
(cos(

2πmn

N
) + sin(

2πmn

N
)

This is particularly useful because it avoids complex numbers. There are also advantageous
properties that make it easier to compute things like the DFT with minimal computations
at the end.

Note that there are other transforms as well but they simply aren’t as common as the above.
Moreover, the most important one to remember is the Discrete Fourier Transform for it is the
most useful in the field of computer vision.

2.4 Uncertainty Principle

You may remember this from Quantum Mechanics as the Heisenberg Uncertainty Principle! I’m
not totally sure if it’s equivalent, but from my understanding, it’s essentially the same concept.
The idea briefly stated is that: you can never precisely know both the exact time-components
and frequency-components of a signal. This means that there will always be a trade-off between
which one you want to use. The equation that governs this is:

∆t ∗∆w ≥ 1

2
Note that ∆t is the uncertainty of time and ∆w is the uncertainty of frequency. In other words,
this means that given a pixel in an image, we can NOT (and will NEVER be able to) identify the
exact frequencies at a particular pixel. We have to either trade-off knowing the exact frequencies
for “around the exact” frequencies or the pixel for “a general region of the pixel”.
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2.5 Gabor Transform and Spectogram

This is a technique we can use in Fourier analysis to get around the uncertainty principle issue.
To understand and make sense of it in this context, however, it makes a lot of sense to think
about audio signals. The broad gist of the Gabor transform is to convolve a normalized Gaus-
sian function (area under bell curve is 1) with the Fourier Transform of a signal. The idea is
that since we can’t necessarily know the exact frequency at a particular “pixel” or particular
“time”, why not take compute it in the general (normalized Gaussian region with that point at
the center) vicinity of the area of a pixel, and get some broad information about the frequencies
in that area near the pixel.

Define a function g(t) which is a normalized Gaussian function. It is in general, the window
function and you can pick any other normalized function as well to be used here; we just need
it to be centered at t. Define the Gabor transform as the convolution of the function g and the
Fourier Transform to obtain the following for the continuous case:

G(f) = f̂g(t, w) =

∫ ∞

−∞
f(x)e−wtg(x− t)“dx

Please note that the Gabor transform is a function on the signal f , but produces a function
which takes in an input of both time and frequency. It is essentially asking the question, given
a time “t”, what is the strength of a given frequency at “w”, and is plotted either in some type
of color, or shaded by darkness. The resulting output when plotted in a graph is known as a
spectrogram or sonograph. This is the same algorithm things like Shazam and Apple Music use
to find and determine music.

This topic will end up coming back again as the Gabor Filter which is a discrete version of
this transform that is used for texture-analysis in images.

2.6 Filtering Transforms

These transforms are VERY important for computer vision since they allow you to filter through
data and determine what type of frquencies, in particular you need. To start, we note that there
are many different types of filter transforms:

• Low-Pass Filter - retains low frequencies while high frequencies are suppressed

• High-Pass Filter - retains high frequencies while low frequences are suppressed

• Band-Pass Filter - retains frequencies in a specified frequency band

• Band-Stop Filter - frequencies in a specified frequency band are suppressed

• Notch Filter - suppresses a single frequency

We say that a sequence f = {f(k)}k∈Z is defined if the smallest interval which contains all
integers k ∈ Z such that f(k) ̸= 0 can be marked as [a, b] where a, b ∈ Z. In practice, it’s
basically saying that the filter needs to NOT be infinite. We can first define the sequence u (the
vector that is to be filtered) as a function u = {u(k)}k∈Z. The associated filter transform is:

∀n ∈ Z, F (u)(n) =
∑
k∈Z

f(k − 2n)u(k)

Notice that this is very similar to the idea of discrete convolution which is defined the following
way:

(f ∗ g)(t) =
∞∑

x=−∞

f(x)g(t− x)
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Note that if we define F (u) as it’s own function, which it is in some sense (because it is just a
function that outputs the result at the n-th position of the vector given the filter transform and
sequence u), we can note that the major differences are that the filter transform uses 2n instead
of n (where the convolution uses t) and the filter transform doesn’t subtract k from 2n when
convolution would subtract x from t.

This basically suggests that the filter transform doesn’t “invert” or “flip” the input (like a
convolution would) and “filters” through the vector by a series of 2. This is because of how
the Wavelet transform is defined and because in DSP, there is an advantage to using the filter
transform to reduce the dimension of the dataset down by a factor of 2. Here is an example to
better understand the Filter transform:

EXAMPLE: Suppose we consider a filter f on length 4 supported on [0, 3] then for input signial
u which also has length 4 supported on [0, 3], show what the matrix equivalent of the filtering
transform is.

∀n ∈ Z, F (u)(n) =
∑
k∈Z

f(k − 2n)u(k)

F (u)(1) = f(0− 2)u(0) + f(1− 2)u(1) + f(2− 2)u(2) + f(3− 2)u(3) = f(0)u(2) + f(1)u(3)

F (u)(0) = f(0)u(0) + f(1)u(1) + f(2)u(2) + f(3)u(3)

F (u)(−1) = f(0 + 2)u(0) + f(1 + 2)u(2) + f(2 + 2)u(2) + f(3 + 2)u(3) = f(2)u(0) + f(3)u(1)

Given that we are trying to create a matrix formulation that fits the equation: Fu⃗ = G where
G is the output of the Filter Transform:

F =

f(2) f(3) 0 0
f(0) f(1) f(2) f(3)
0 0 f(0) f(1)


Additionally, note that we can use a discrete substitution and derive the following equivalent
formula for the filter transform:

F (u)(n) =
∑
k∈Z

f(k − 2n)u(k) =
∑
k∈Z

f(k)u(k + 2n)

Some interesting and semi-important facts about the Filter Transform.

• Given a filter f supported on the interval [a, b] and the sequence u is supported on the
interval [x, y], then we know that F (u) is supported on the following interval (MATH416
notes for proof): [

⌈x− b

2
⌉, ⌊y − a

2
⌋
]

• The Filter Transform often leaves behind a lot of zeroes (especially in the starting and
ending stages when the filter “starts” to interact with the vector. For sake of computer
science and making more efficient transformations, mathematicians have developed a way
to use the periodicity of a filter’s application to a signal to reduce this. You can read more
about this in the MATH416 notes in pages 87-88. If you’re into understanding patterns,
the general gist is that for the above example, instead of the matrix F, it would output G:

G =

(
f(0) f(1) f(2) f(3)
f(2) f(3) f(0) f(1)

)
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2.7 Orthogonal Conjugate Quadrature Filters (OCQF)

We need to assume the following properties of a given filter to assign it to the term “low pass
filter”:

• Finiteness - Assume that ψ has a compact support, then the sequence {h(k) : k ∈ Z}
is different from 0 for all but finitely many k’s (recall this is a condition I mentioned
earlier in the definition of a filter since it doesn’t really make sense to process finite data
(image-related data especially) with an infinite filter.

• Self-Orthonormality - let us first define σ as the Kroenecker Delta Function:

δij =

{
1 if i = j

0 if i ̸= j

Then the condition is the following:

∀m,n ∈ Z,
∑
k

h(k + 2n) ¯h(k + 2m) = σmn

This is basically suggesting that the filter’s impulse (or output) is orthogonal to any of its
time-shifted variants and since we defined the filter transform as “separated by units of 2”
(recall the “+2n” in the definition that I mentioned earlier).

• Normalization - assume that ψ is integrable then we can say that the sequence {h(k) :
k ∈ Z} satisfies the following conditions (second is easily derived from the first):∑

k

h(2k) =
∑
k

h(2k + 1) =
1√
2∑

k

h(k) =
√
2

Upon defining such a low-pass filter, which is ANY filter which fits the above properties, we can
then claim that there exists a unique associated high pass filter defined by the following where
m is the length of the filter:

g(k) = (−1)k ¯h(m− k)

The associated high-pass is guaranteed to exhibit the normalization and the self-orthonormal
conditions mentioned earlier. We are also guaranteed independence (the two filters are orthonor-
mal with respect to eachother) and completeness:

• Independence

∀m,n ∈ Z,
∑
k

g(k + 2n) ¯h(k + 2m) = 0

• Completeness

∀m,n ∈ Z,
∑
k

h(2k + n) ¯h(2k +m) +
∑
k

g(2k + n) ¯g(2k + n) = σmn

All these properties are relatively straightforward to prove, and can be shown in the MATH416
notes in the section on Wavelets and Multiresolution Analysis.

Let us now define Orthogonal Conjugate Quadrature Filters as a pair of Low-Pass Filters
and High-Pass Filters that meet the above criterion. Note that if we can find any filter that is
a low-pass filter, we can use the formula defined earlier to create the associated high-pass filter
which will satisfy the Independence and Completeness properties. It is also easily provable that
an OCQF must have an even length.
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2.8 Wavelets and Multiresolution Analysis

This is a very niche topic that is useful for computer vision, but can be very bogged down with
math so I want to be careful. It is also incredibly important for image-compression and is used
in the new JPEG compression algorithm.

Let us define the idea of wavelets by first acknowledging the Uncertainty Principle - we already
accept we can never know exactly when a frequency takes place. But an important secondary
conclusion about human and image nature: lower frequencies tend to last for longer time
while higher frequencies tend to last for shorter time. It is only natural to define a
system of compression/analysis that uses this information. Let us start by defining properties
of a wavelet function:

1. Zero-Mean: ∫ ∞

−∞
ψ(t) dt = 0

2. Normalization: ∫ ∞

−∞
|ψ(t)|2 dt = 1

3. Decay/Finite-Support: The wavelet must be non-zero for only a finite amount of time
within the wavelet or else it won’t be able to capture features based on isolated frequency
inputs. There are also connections to an idea called the Fast Wavelet Transform which
requires the wavelet decays or has finite support.

4. Oscillatory: Although not necessarily a requirement, practically speaking, all wavelet
functions must be oscillatory in order to capture the high frequency components of a
signal.

We can also define the notion of child wavelets from the mother wavelet below. These essentially
take the wavelet function and shrink it’s behavior to half of where the original wavelet function
was defined, leaving the other half 0. It also adjusts properties of the functions (time-shifting
and amplitude-shifting) in order for it to meet the above properties.

ψab(t) =
1√
a
ψ(
t− b

a
)

Some examples of wavelets (along with a brief description are the following):

1. Haar Wavelet - a function that is 1 for half the input region, and -1 for the other half,
and 0 everywhere else. This wavelet is most commonly associated with the Discrete Haar
Transform commonly used in image compression.

2. Daubechies Wavelet - a weird-looking shark-tooth wavelet function also used for image
compression, but also used for image-analysis.

3. Mexican Hat Wavelet - looks like a sombrero lol, it is used along with many other filters
for other particular reasons, but I don’t really care enough to write or find them out

We define the Discrete Wavelet Transform through using the idea of a “pass”. Broadly speaking,
we want to use a filter transform to filter the data into what is “high frequency” and “low
frequency” using the Orthogonal Conjugate Quadrature Filter scheme. Let us define the filter
transform for the low pass filter as G and the high pass filter as H (matrices are capitalized,
vectors are lower case): [

G
H

]
v⃗ =

[
a⃗

d⃗

]
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This means that a single pass of the Discrete Wavelet Transform applied to a vector v⃗ of
length 2m would yield a vector of length 2m composed of two vectors a⃗ and d⃗ each having 2m−1

elements. It is worth noting that:
Gv⃗ = a⃗

Hv⃗ = d⃗

We say that vector a⃗ composed of the result of the filter transform with a low-pass filter defined as
matrix G creates the approximation coefficients while the vector d⃗ composed of the result of
the filter transform with the high-pass filter defined as matrix H creates the detail coefficients.

The key observation here is that the low-frequency coefficients are the important ones that
last for longer and contribute more to the visuals of the image while the higher-frequency coef-
ficients are either noise, or make the image look slightly better, and so can be mostly ignored.
If you’re asking about why the Uncertainty Principle matters here, it sort of doesn’t... it’s more
important for running the wavelet transform on audio signals in the continuous case.

2.9 Full Discrete Wavelet Transform

The Full Discrete Wavelet transform (for a vector, NOT an image) revolves around the algorithm
above, but simply recursively applied until we end up with a single value for the Approximation
Coefficient. Suppose we run a single pass of the Discrete Wavelet Transform on vector v⃗ of
length 2m: [

Gm

Hm

]
v⃗m =

[
⃗am−1

⃗dm−1

]
We now redefine NEW matrices G and H that are intended for filtering the output of the
approximation coefficients, and then complete a NEW pass of the Wavelet Transform on the
output of a⃗. So, for the second pass, we use the vector a⃗ from earlier and continue:[

Gm−1

Hm−1

]
⃗am−1 =

[
⃗am−2

⃗dm−2

]
The above is the 2nd pass of the wavelet transform, and we keep on doing this same “pass of
the wavelet transform”, yet now to am−2 adjusting the matrices accordingly. We keep on doing
this m times until we obtain a single value for the coefficient and say that the output of the Full
Discrete Wavelet Transform is the vector:[

a0 d0 d1 ... dm−2 dm−1

]T
This produces a vector of length m composed of vectors (nested vectors!) that are the output of
the Full Discrete Wavelet Transform. Broadly speaking, the first approximation coefficient de-
fines the broad “approximation” or “basis” of the signal. The remainder of the detail coefficients
operate at different resolutions since they are at different vector-lengths and were separated (high
from low) at different “passes” or “iterations” of the transform.

Warning: these matrices G and H aren’t actually using the same filter transform
I mentioned earlier but rather the periodic filter transform to keep dimensions in
check and simplify computation – check that out in the MATH416 notes if that
interests you.
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2.10 Full Discrete Haar Transform

The Discrete Haar Transform, is just a more specific Discrete Wavelet Transform defined
with the particular Haar Filter. The Haar Filter is the set of following filters (low-pass first,
high-pass second):

h =

[
1√
2
,
1√
2

]
g =

[
1√
2
,− 1√

2

]
If we use the first filter as the low-pass filter and the second filter as the high-pass filter, and
use the OCQF together in order to perform the Discrete Wavelet Transform, we have computed
the Discrete Haar Transform. Look at the MATH416 notes for an example here. That being
said, this whole discussion on the transforms should merit a really important question: what
do the wavelet functions I mentioned about in section 2.5 have anything to do with
this transform? This is something I need to answer later, but broadly speaking, it’s related
to how “projecting” the vector on the functions works.

2.11 2 Dimensional Wavelet Transform Example

Here is where things become a lot more fun! Let us first discuss how the 2 dimensional wavelet
transform works from an idea-perspective, and then see it by taking a look at a Jupyter
Notebook I made. Instead of constructing a “low-pass filter” and “high-pass filter” which
separate a vector into low-frequency and high-frequency components, we instead run them in
horizontal and vertical directions:

• LL Coefficients - these are the coefficients that arise when you run low-pass filters in
both directions (on the column vectors AND the row vectors). These are the same thing
as approximation coefficients, and tend to carry the most amount of “information” about
the image.

• LH and HL Coefficients - these are both the exact same things but in different direc-
tions. LH is when you apply the “low-pass filter” across the rows but a “high-pass filter”
across the columns. This will pick out the features that stay the same across the rows, but
not the columns. HL is the exact opposite, and will pick out the exact opposite features.
These are both considered part of the detail coefficients.

• HH Coefficients - these are coefficients that are produced when you run high-pass filters
for both the column and row vectors. This tends to have the least amount of information
compared to the other coefficients. It is also considered a part of the detail coefficients.

2.12 Laplace and Z Transform

This is an aside because these transforms are often given similar functional-names to the Fourier
transform (“transforms from the time domain to the frequency domain”), but aren’t necessarily
exactly the same thing.

L{f(t)} = F (s) =

∫ ∞

0

f(t)e−st dt, s ∈ C

Z{x[n]} = X(z) =
∞∑

n=−∞

x[n]z−n, n ∈ C
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Let us first compare the Laplace and the Continuous Fourier transform, here they are repeated
but next to eachother:

F{f(t)} = F (ω) =

∫ ∞

−∞
f(t)e−iωt dt , ω ∈ R

L{f(t)} = F (s) =

∫ ∞

0

f(t)e−st dt , s ∈ C

Here are some key differences to note between the two transforms:

• The integrals are different because the Fourier Transform’s integral varies from −∞ to ∞
while the Laplace Transform’s Integral varies from 0 to ∞.

• The Laplace transform takes in any complex number s ∈ C while the Fourier transform
takes in any real number ω ∈ R and multiplies it by i to use in the exponential.

Overall, you should be feeling that the transforms are very similar! Let us show how the Laplace
transform is in some sense an extension of the Fourier Transform, and let’s start by recognizing a
central limitation of the practicality of the Fourier transform: in order to apply the Fourier
Transform to a function, we require that the function it is being applied to decays
on both tail ends. This is because otherwise, the integral we compute simply would be
unbounded. This condition is often called the finite energy condition and is stated the following
way where f(t) is the function: ∫ ∞

−∞
|f(t)|2 dt <∞

What happens if we want to compute the Fourier transform of a function that doesn’t fit this
criteria? Let’s start by forcing the function g(t) to fit the criteria of finite energy. Let’s first
define the Heaviside function:

h(t) =

{
0, if t < 0

1, if t ≥ 0

Next, let’s note that any function which is unbounded on positive infinity can be multiplied by
e−λt in order to “bound” it to 0. We can adjust λ as needed to “force” it to 0 for most functions.
Let’s start by defining f ′(t) which uses the above fact:

f ′(t) = e−λtf(t)

But what if it accidentally blows up the negative portion of the function f(t)? If that doesn’t
already decay, or if it decays at a slow enough rate, e−λt will augment the function to infinity.
And so, we use the Heaviside function here to basically ignore all of the negative region of the
function f(t) regardless of whether it decays or blows to infinity for simplification purposes! Let
us now define the function g(t) which is the new “function” which fits the finite energy criteria,
and then apply the Fourier Transform (defined as F) on that function:

g(t) = e−λtf(t)h(t)

G(t) = F(g(t)) =

∫ ∞

−∞
g(t)e−iωt dt , ω ∈ R∫ ∞

−∞
e−λtf(t)h(t)e−iωt =

∫ ∞

−∞
f(t)h(t)e−λ−iωt

Note that integrating over the Heaviside function h(t) is essentially the same as integrating over
the region of 0 to ∞ because the negative region is multiplied by 0:∫ ∞

0

f(t)e−λ−iωt
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Now we can note that the λ was defined from the e−λt used to “forcefully” decay functions which
didn’t already decay to meet the finite energy requirement. But also note that the λ can be
viewed as an input parameter. Let us arbitrarily define s ∈ C such that:

s = λ+ iωt

We can then redefine the Laplace transform per its initial definition that is:

L{f(t)} = F (s) =

∫ ∞

0

f(t)e−st dt, s ∈ C

We can also note that the Laplace transform is simply the Fourier transform for positive-only
signals except where the input s is restricted to the unit circle and given as an input w where
eiw = s.

You might be asking, what about the Z-transform though? The Z-transform is, broadly
speaking, the discrete equivalent to the Laplace transform, and we can suggest a similar rela-
tionship between the Laplace and the Fourier transforms, between the Z and Discrete Fourier
transforms. However, note that in discrete signals, the finite energy condition is already dealt
with (because we only care about N of the coefficients). That being said, the Z-transform
allows us to use a more broad definition of the phrase “transforms from the time domain to
the frequency domain” because the Z-transform, like the Laplace transform, allows for complex
frequencies.

The importance of this is mostly in electrical engineering and differential equations where Laplace
and Z transforms are used to simplify partial and ordinary differential equations, and also sim-
plify and compress certain types of signals. For the purposes of someone interested in computer
vision however, this topic is largely speaking, practically useless.

2.13 Practice Problems

These are some compiled practice problems focussing on ensuring understanding of theory and
implementation:

1. Prove/compute the following properties (questions are arranged easiest to hardest):

• Prove that the pair of Haar filters is the only OCQF of length 2.

• Compute the eigenvalues of the DFT matrix (HINT: use the unitarity of the DFT )

• G iven v ∈ RN and v(n) = v(−n) when periodically extended to n ∈ Z, show the
DFT of such a vector v is real-valued and even.

• Prove the Danielson-Lanczos Lemma for the Fourier Transform.

2. Compute the following using MATLAB or Python (ideally in a Jupyter Notebook) – most
of these implementations can be found here. Note that some of them are in MATLAB
and others are in Python for convenience.

• The Discrete Fourier Transform of an Image (manually implement it)

• Use either Python or MATLAB’s implementation of the Fast Fourier Transform and
compare the speed of your DFT algo and the FFT

• The Discrete Wavelet Transform of an Image (don’t write the algorithm yourself)
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2.14 Further Learning

There are so many good resources to learn more about Fourier-Based Analysis (especially given
that my notes is more intended for people with some background in the field). Here are a list of
some of the resources I recommend to use:

• MATH416 Notes by Dr. Czaja - I personally found these helpful overall, but a lot
of the section on DWT, MRA, and Filters, was bogged down with a bunch of math to a
point where none of the intuition made sense to me. It’s overall a good resource.

• Steve Brunton’s Webseries - a link to the webseries is here. This webseries is overall
pretty good. I didn’t really watch the first few videos because I knew the topics, but the
focus of the series is WAY less on computation and significantly more on understanding
the concepts. It’s particularly noticeable in the sections on MRA, Wavelets, and Laplace.

• Nathan Kutz Video on Wavelets - this single video was very helpful for me and can
be found here. This video talks about the intuition for the Wavelet Transform and is a
really good segue from the Gabor transform to the Wavelet transform.

• Kutz and Brunton’s Textbook - the above two mathematicians/engineers are faculty
at the University of Washington and co-wrote a textbook (of which the second chapter
mostly) was used to create the webseries on Fourier Analysis that I mentioned earlier. You
can find a link to it here. I didn’t use it particularly, but I’m sure it’s very helpful.

• Rafat’s Website - this website is particularly helpful if you want a more theoretical
treatment, and a bit more logic on some other stuff. I didn’t really use it that much, but
once again, it definitely could be of help! Find a link here.
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3 Image Processing

This is arguably, one of the most important parts of computer vision. Many of the topics in
this section do rely on some knowledge of Fourier-based Analysis, but I will refer to the specific
sections and cases where this happens.

Many of the notes on this topic are particularly from Shree K Nayar’s First Principles in Com-
puter Vision Image Processing series and also College Friendly’s introduction to Digital Image
Processing video series. I also use some textbooks like Szeliski’s textbook. You can find all of
these in the final section.

3.1 Introduction to Image Processing

Image processing is, broadly, the practice of preprocessing and applying various filters and trans-
forms to an image to extract meaningful features. This involves running different algorithms,
filters, kernels, and transforms on the image to identify and highlight certain characteristics. In
a machine-learning pipeline, this would typically be the very first stage. It often encompasses
both removing noise from the image, and extracting the important features. You may, however,
see the term “digital image” thrown around here and there. This will be explained a bit later,
but think of this, as your standard pixelated image.

We also need to formulate a way to understand how to process an image, and so we intro-
duce a simple image formulation model:

• Light Source - in order to take an image, we need to have a light source prevalent.
We claim that an image can be thought of as the matrix F with parameters x and y
representing a specific location in the pixel. The function f represents the intensity at a
particular pixel but as a function with two inputs instead. Thus:

f(x, y) = F (x)(y)

0 ≤ F (x)(y) <∞

0 ≤ f(x, y) <∞

We say the matrix/function F/f is characterized by the product of the source illumi-
nation i(x, y) and the illumination reflected r(x, y). I will only show this with f even
though it is the same for F . The below are definitions of the functions (note that reflection
is simply a number between 0 and 1):

0 ≤ i(x, y) <∞

0 ≤ r(x, y) ≤ 1

f(x, y) = i(x, y) ∗ r(x, y)

• The rest of the steps will be spoken about later but, depending on what definition of
“simple image formulation model” we use, can include a LOT of different other steps as
well.

3.2 Overview of Image Processing

Here are the different stages and terms regarding steps in image processing which we should be
aware of:
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• Image Acquisition - this is the process of taking a camera, clicking a photo (so the
science behind that), and transforming the continuous image into a discrete one which we
can use for image processing.

• Image Enhancement - this is the process of manipulating an image so the result is more
suitable to find features in our models. Often times, this is chosen by the human who is
running the processing; the choice of what “enhancements” to use is often subjective.

• Image Restoration - this is the process of improving the appearance of an image. Note
that this is very similar to enhancement, except often requires more probabilistic and
mathematical analysis as opposed to subjective human choices. The focus on this is also
more relevant to cases where things have been distorted; assume a picture that is very
blurry, we might use image restoration in order to make the image sharper again.

• Morphological Processing - this is the process of applying some type of transforma-
tion/adjustment to structures within an image. A great way to imagine this is thinking
about a black-and-white image, and trying to either scale, dilate, erode, or perform any
other transform on that structure, in the image.

• Image Segmentation - this is one of the hardest things to do in Image Processing but is
the idea of partitioning an image into constitutent parts or objects. Think about taking
a photo of an apple in the background, the idea of partitioning the apple from the rest of
the image is a part of the image segmentation task.

• Object Recognition - this is again another really hard tasks to do in image processing
and involves labeling the constitutent objects with some type of predecided label. If we
were using the previous example, separating the apple from the rest of the photo falls
under the umbrella of image segmentation, but labeling that separate “object” as an apple
falls under the realm of object recognition.

• Feature Selection - this is the idea of picking a representation of an image in order to
discern and pick particular features (ideally for some type of model). Choosing to use
a boundary-based representation, or choosing to use a grayscale-based representation, or
anything in this general field, is something that is very important yet very challenging.

• Compression - I won’t spend much time on this particular part of processing because I
discussed many of the techniques in the Fourier Analysis Topics section.

• Color Image Processing - this involves using color and analyzing the color of certain
things in an image to extract features, and perform other image processing functions
mentioned earlier.

3.3 Sampling and Quantization

Cameras often are a product of different light sensors, and the images they first create are
called continuous images. These are images that aren’t discretized, and can’t necessarily be
“turned” into pixels. With that, we want to define the notion of sampling from a continuous
image and discretizing it. Let’s first start by trying to discretize some type of wave function.
Suppose a simple sin function of the following form:

f(x) = sin(2x)

For the above sinusoidal function, we note that the amplitude is 1 and the period is π. If we
were to sample this function along the x domain at points nπ where n ∈ Z, we would get 0 every
single time:

f(nπ) = sin(2(nπ) = sin(2nπ) = sin(0) = 0

25



Now, suppose the following function:

g(x) = sin(
x

2
)

If we were to sample this function at a rate of x = nπ like above, we would instead get:

g(nπ) = sin(
nπ

2
)

Note that for any given n ∈ Z, this value is distinct only from [0, 4] and periodic modulo 4
afterward, and so, we ultimately conclude that 4 different values can be sampled which can be
written as the following vector:

[sin(0), sin(
π

2
), sin(π), sin(

3π

2
)]T

This is particularly important because it shows how sampling a continuous sinusoidal/oscillating
function can lead to aliasing the data – sometimes we get pretty nice representations of what
the data looks like, but other times, we end up getting some crazy information like getting
repeated 0’s. In more extreme cases, you can end up getting more unwanted frequencies and
other information which can really screw with “discretizing” the continuous signal.

This whole field of trying to understand sampling from a continuous signal falls in the realm
of electrical engineering, signals processing, and information theory, and the famous Shannon-
Nyquist Sampling Theorem dictates how should approach sampling a continuous signal in
order to avoid aliasing:

fs ≥ 2fmax

In this above formulation, fs denotes the sampling frequency (NOT the period of sampling
which is what I used above), and fmax denotes the highest frequency prevalent in the signal.
Using this inequality for figuring out optimal frequencies to sample at allows for perfect recon-
struction – we are capable of getting rid of aliasing because we are setting a lower bound for
sampling so we can’t “lose” components of the signal like we did for the sin(2x) case where
naively looking at the sampling data would make us think we had an amplitude of 0 because all
the data was 0.

We can now define the notion of a Shah function, which is a train of impulses of length 1.
Think of it is as a discrete function which for periodic X, returns 1, and for all other X, returns
0:

s(x) =
∞∑

n=−∞

δ(x− nx0)

δ(x) =

{
1 if x = 0

0 if x ̸= 0

Note that this is a different Kronecker Delta function than the one used earlier with the sub-
scripts. We can also define the Fourier Transform of the Shah Function as the following function
(computation isn’t shown, but it isn’t hard to prove):

S(u) =
1

x0

∞∑
n=−∞

δ(x− n

x0
)

Note that the Fourier Transform of the Shah Function is basically a Shah Function itself except
with the amplitudes adjusted (use a discrete substitution for x′ = 1

x0
and adjust the Kronecker
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Delta function to use 1
x0

instead of 1). That being said, we can reintroduce sampling as the Shah
function in terms of multiplication. Suppose we want to sample at some x0 rate a function f(x):

g(x) = f(x)s(x)

The resulting function g(x) returns a discrete signal sampled at the particular signals. We can
take the Fourier transform of the whole thing and note that multiplication becomes convolution
in the Fourier Domain:

Fs(u) = F (u) ∗ S(u)

Note that since the S(u) produces a delta-like function, we can note that we’re simply going to
get multiple copies of the sampled function over and over again! I won’t get further into here,
but this notion is how we define the Shannon-Nyquist Sampling Theorem, and how we work on
reducing aliasing from occurring in any image. The techniques to reduce aliasing (which stem
from this entire concept) are as follows:

• Band Limit - we run a low-pass filter on the frequencies entering the camera, and get rid
of any of the frequencies which exceed half the sampling frequency (that way the maximum
simply will always meet the Shannon Sampling Theorem)

• Box Filter - we can also run a general box-filter on the image first (generally a smaller
one) to get rid of the really high frequencies prevalent in the image and reducing them
down to those allowed by the filter.

Let us now define the notion of quantizing, which is pretty simple: it consists of just taking
a continuous image, and turning it into “pixels”. This is done by taking numerous horizontal
lines through the image, sampling the lines and image through the techniques mentioned above,
and taking the discrete sampled values and assigning them to pixels. This often constructs an
“accurate enough” representation of the image which we humans can’t differentiate from the
initial image.

3.4 Adjacency and Distance Measures

This topic is mostly logical – in a standard Digital Image Processing exam, you’d find content
on this, but I don’t think it’s that important. Let’s start by defining distance measures:

• Euclidean Distance - the below formula gives the distance of a point (x,y) from the
origin:

D(x, y) =
√
x2 + y2

For those interested in mathematics, this is also known as norm-2 – read more about norm
functions from a linear algebra perspective here

• Manhattan Distance - the below formula gives the distance of a point (x,y) from the
origin:

D(x, y) = x+ y

This is norm-1 for those interested in a linear algebraic approach to norms.

• Chessboard Distance - the chessboard distance is basically asking, given a king places on
a given pixel (x,y), how many steps would it take to get it back to 0 – this isn’t necessarily
computable via a formula because it depends on the structure and the distance of where
the pixel is located.

Now let’s discuss adjacency measures. There are typically 3 major adjacency measures used in
image processing, and I’ll discuss some nuances with respect to them later:
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• 4-adjacency - these are the pixels that are directly up, down, left, and right (by one pixel
only) to a given pixel

• 8-adjacency - same logic as above, except pixels that are just one “chess-step” (by a king)
away from the given pixel so diagonals are included too

• Mixed-adjacency - these are the set of pixels that are all connected as a region given
that there is at least one 4-adjacency between them (so a set of three diagonals on its own
wouldn’t meet the criteria for mixed-adjacency). It kind of combines 4 and 8 adjacency to
look at broader amounts of pixels, but importantly, makes sure no ambiguities are included
so there must be at least one four-adjacency connection.

These pixels are often considered “connected” if they match one of the other pixels (so in a
binary image, if only two out of the 4 pixels from the 4-adjacency are the same “type” or “color”
as the initial pixel, only those are considered 4-adjacent). When we have more “real” grayscale
images, we define this notion by picking “differences” we will allow. So, we can construct a set
V :

V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
We say that a pixel is 4-adjacent (using the V above) if it’s difference from the initial pixel (in
intensity) is in the set of V and it’s located either directly up, down, to the left, or to the right
of the pixel.

3.5 Operations on Images

Note that intensity values are defined in some range, and the values must stay in that range.
And so, we define the following important notions of operations particularly for grayscale images
(these properties are easily translatable to properties for RGB images as well):

• Clipping - If we ever end up doing some type of operation on a pixel and get a value that
is greater than 255, we clip the value at 255. The same thing happens if a value is less
than 0. The effect this produces is often termed saturation (it is also used as a synonym
for clipping).

• Round Floating Numbers - always round floating numbers of intensity values to the
nearest integers.

• For anything else that happens in crazy instances, just use best judgement. If you end up
getting a value like infinity, it often makes sense to either arbitrarily assign that to 0 or
255. Using common sense here is pretty much the common approach.

We can then define the notion of point-wise operations. Suppose we have two images F and G
with pixels at x-coordinates and y-coordinates at the point (x, y). We then define operation g
which takes in two integers and outputs another integer and define a new image H such that:

∀x, y ∈ Z , H(x)(y) = g(F (x)(y), G(x)(y))

Note that it’s assumed we’re only really caring about values x and y that fit in the domain of
the image. Common operations that people might use are standard logical operations (AND,
OR, XOR, etc...) for binary images, and standard integer operations for grayscale images (+, -,
*, etc...)

3.6 Other Important Transformations

Here I am going to refer to some famous transformations which are called point-transformations
– these are transformations that can be characterized as the output’s particular pixel depending
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on the input’s particular pixel (at that point):

G(m)(n) = f(F (m)(n))∀f ∈ Z → Z

Some famous versions of some of these transformations include:

• Digital Negative - often stored in RAW files and retain a lot of the initial data in an
image

• Thresholding - basically “sets” pixels to a particular value (usually maximum) if the
pixel meets a certain intensity-threshold, and send the pixel to the minimum (usually 0)
if the pixel doesn’t meet the threshold.

• Clipping - does the same thing as thresholding but for a range of values instead of a
particular value

• Bit-Plane Slicing - involves taking the grayscale intensity values and converting to binary
representation; importantly, we produce multiple different binary images (0 or 1) for the
rightmost bit, 2nd rightmost bit, 3rd ... etc

• Contrast Sketching - this point transformation uses certain parameters to highlight
certain colors or intensities more than others

• Logarithmic Transformation - this uses a logarithmic function to drastically reduce
certain colors (lighter ones normally). This makes it easier to see where high-intensity
values are located relative to medium and low intensity.

• Power-law Transformation - this uses the gamma correction in order to further enhance
certain pixels which brightens/darkens more sections accordingly

• Others - there are a LOT of others that I am not mentioning for simplicities sake, and
also because these are things you know on a need-to-know basis (not really something you
need to always know if that makes sense) – that being said, you can learn more about it
the College Friendly’s Youtube Series on Digital Image Processing in videos 6,
7, 8, and 9.

• Histogram Equalization - (NOT a point operation transformation, but another one I
wanted to include) - this is a technique in which you assign a histogram to grayscale inten-
sity values of an image. Using that, we end up constructing a PDF and CDF (probability
distribution and cumulative distribution functions), and adjust the values of the pixels so
they better fit per the average values of the buckets of the CDF. This is used to better
enhance contrast and equalize some of the intensities of the image.

3.7 Linear Image Filters (Gaussian Filter)

Linear image filters are filters which can be applied to an image as a linear function on the pixels
(or elements) of the image (viewed as a matrix). Importantly, it is equivalent to a convolution
which is provable. I won’t get into a proof, but there are many such proofs online. Let’s first
define the definition of two-dimensional convolution:

g(i, j) =
N∑

m=1

N∑
n=1

f(m,n)h(i−m, j − n)

Note that for the case of an image, when applying a mask or a filter (ie a convolution with some
type of discrete function of a certain size), dealing with the borders is significantly harder. So,
what we end up doing is figuring ways around this – there are typically 3:
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• Ignore border values (which just makes a smaller image because we need to ignore M
2
and

N
2
amount of pixels on the borders.

• Pad with a constant value – we can take the average of the image and make the image big
enough to accommodate convolving with the filter by padding with the average value

• This is the most common approach, but we can instead pad the outside of the image with
the reflection of the inside of the image handling diagonals by averaging.

We can also observe the 2d convolution and note that it is basically a 1d convolution except with
two sums, and a multi-argument function. We can progress from here to define the impulse
filter which is simply a filter with one “dot” in the center of the “mask” (imagine the mask as
a matrix which is being used to define a function convolved with the image, the matrix would
have all 0’s except one value of 1 in the center pixel). We can observe the sifting property
stating that convolution with the impulse filter returns the initial image:

F ∗ I = F

Let’s also note two important properties regarding convolution (which have been mentioned
earlier but are worth reiterating for the 2dimensional case):

• The “area” of the convolution or the amount of intensities in the entire mask must equal
1 or else the image will be oversaturated (which means the values, as aforementioned, will
need to be clipped off at the highest intensity level allowed)

• The convolution will FLIP in BOTH directions (vertically and horizontally), the initial
mask before applying it. So, if we define a mask H of length 4 by 4 with only entry
H(0)(0) = 1 and all other entries non-zero, when we convolve with this max an image of
something, the resulting image will be shifted UP and to the LEFT even though the “1”
in the matrix would make you think we are grabbing values in the upper left and shifting
them DOWN and to the RIGHT. BE CAREFUL WITH FLIPPING!

Now, let’s try and define the notion of several very famous filters (NOTE: kernel, filter,
mask, and template all refer to the same thing):

• Box Filter - this is one of the most famous filters (and was referenced earlier in the
chapter) - it will, broadly speaking, simply grab an image and run a normalized box on it
– it will simply “smoothen” the image (to me, it looks more like a blur).

• Gaussian Filter - this is a filter defined by the Gaussian function (normal distribution
function for 2dimensions basically) that is often used for blurring or smoothening a picture
- it is defined this way:

nσ(i, j) =
1

2πσ2
e−

1
2
( i

2+j2

σ2 )

The 1
2πσ2 is for normalizing the function (in order to make sure that we don’t oversaturate

the image). That being said, it’s also worth noting that σ is a parameter you can pick
(it’s essentially the equivalent to picking the standard deviation of a normal distribution).
This will change how blurry the result becomes (or smooth depending on ur definition).
Let’s quickly reformulate the Gaussian kernel to see an important property (note that we
are assuming the image is a square because we use K instead of M and N independently,
but that shouldn’t be too important):

g(i, j) =
1

2πσ2

K∑
m=1

K∑
n=1

e
−1
2
(m

2

σ2 )
K∑

n=1

e−
1
2
(n

2

σ2 )f(i−m, j − n)
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We can see how the Gaussian filter can actually be observed as TWO convolutions together.
This is a very important property of the Gaussian Kernel – it is separable. Thus, we can
use a 1dimensional Gaussian filter and convolve it with the initial input, and convolve the
result with a 1dimensional Gaussian filter in the other direction. Redefine the Gaussian
filter V and H as the vertical and horizontal Gaussian filters and the Gaussian Kernel for
2 dimensions is essentially:

f ∗G = f ∗ V ∗H
This reduces the complexity from O(n2) to O(n) which makes computing the Gaussian
blur/kernel really nice!

3.8 Non-Linear Image Filters (Bilateral Filter)

These are the set of filters which aren’t linear shift invariant, and thus, can’t really be imple-
mented as convolutions. There are many useful non-linear kernels we would like to implement -
let’s start with the median filter:

The median filter is a filter which applies discrete convolution in some sense with a filter be-
ing applied over an image, but takes the median of the image. This is particularly useful for
when there is a lot of noise in an image (particularly when it’s fine or grainy noise) because
things like the Gaussian kernel would instead smear the noise and make it more preeminent
instead of actually getting rid of it. However, there’s a better way to approach this problem
of getting rid of the noise in an image without blurring up the whole thing: the bilateral filter.

Let’s first visit the idea of the Gaussian filter. We want to only apply the Gaussian filter
to pixels that are similar to the ones around this. So, we can introduce the idea of a Gaussian
filter that varies per pixel in such a way that the filter is biased to include “less” of the pixels
that are different from the original one (this way noise is ignored, and not smeared into the
filter). Let’s mathematically formulate this:

g(i, j) =
1

Wsb

∑
m

∑
n

f(m,n)nσs(i−m, j − n)nσb
(f(m,n)− f(i, j))

There are two Gaussians in this formulation - one Gaussian is the spatial Gaussian which is
used to “blur” the image out (so it just constructs the same thing based on distance to the
pixel), but the other Gaussian is a brightness Gaussian function which is single-dimensional, but
instead takes in the brightness, inputted as f(m,n)− f(i, j) and outputs a coefficient based on
that difference. If the difference in brightness is higher, then we end up with a a lower value, but
if the difference is lower, we end up with a higher value. Also note that we have a normalizing
factor in front to adjust the weight of the entire kernel (after adjusting for this) to make the
energy/area equal to 1.

3.9 Template Matching and Correlation

This problem stems from trying to find a particular set of pixels from a filter (or a template as
it’s called per the namesake) in the image somewhere. It’s important if you’re trying to find
some feature or object in an image somewhere. We can start by taking the template, and trying
to compute the sum of squared differences between both of these in a matrix format:

e(i, j) =
∑
m

∑
n

(f(m,n)− t(m− i, n− j))2

This is basically computing an error function which returns a new matrix which determines the
sum of squared error prevalent in the image. We can claim the pixel with the least squared error

31



marks the region (or, in a more kernel-template approach, is the center of the region) where the
template is located in the image. Let’s expand upon this though:

e(i, j) =
∑
m

∑
n

(f(m,n)− t(m− i, n− j))2

e(i, j) =
∑
m

∑
n

(f 2(m,n) + t2(m− i, n− i)− 2f(m,n)t(m− i, n− j))

Since f 2(m,n) and t2(m − i, n − i) are already decided and we can’t change this in any form,
let’s instead focus on the last term. If we want to find where the error is as low as possible, and
there is a subtraction of 2f(m,n)t(m − i, n − j) then we can claim that reducing the error is
equivalent to maximizing that quantity! We can note (and this isn’t really a coincidence), that
the term f(m,n)t(m− i, n− j) inside a summation looks a lot like convolution. However, this
is defined as cross-correlation:

Rtf (i, j) =
∑
m

∑
n

f(m,n)t(m− i, n− j) = t ⋆ f

This is very similar to discrete convolution, except (with a huge difference), we don’t FLIP
the kernel/template. This obviously makes sense because if we want to find the similarity
between two things, we don’t want to alter the templates structure in any way. Thus, in some
sense, convolution and cross-correlation are very similar (one just flips the kernel both ways and
performs dot-wise multiplication, and the other just omits the flipping). We do need to account
for the fact that, as mentioned earlier with oversaturation the energy of the kernel must be 1 –
however, this isn’t necessarily going to happen because of how we are trying to find something
else. So, we need to introduce the normalized cross correlation which solves the issue of
normalization by dividing through the correct factors:

Ntf (i, j) =

∑
m nf(m,n)t(m− i, n− j)√∑

m

∑
n f

2(m,n)
√∑

m

∑
n t

2(m− i, n− j)

I won’t get too deep into this, but Shree Nayar’s video on Template Matching (First Principles
of Computer Vision) is a great resource for this!

3.10 Image Filtering in Frequency Domain

Since I have already written the section on Fourier-Based Analysis, I don’t want to get too far
into this. Broadly speaking, this whole idea just takes the main ideas of low-pass filters, high-
pass filters, and the Fourier transform, and extends them into two dimensions. As mentioned in
the end of section 1.2, convolution and multiplication have a special relationship in the context
of the interactions between the spatial and frequency domains – that being said, let’s restate the
fact (the premises of the fact are given first):

G(u) = F(g(u))

H(u) = F(h(u))

G(u)H(u) = g(u) ∗ h(u)

Note that the ∗ operator is referring to CONVOLUTION not multiplication (or else this is
patently untrue). We can also note that as a result of the Fast Fourier Transform (mentioned in
Section 2.2 using the Cooley-Turkey approach and the Danielson-Lanczos lemma), computing
the Fourier Transform and it’s inverse is extremely cheap. Thus, instead of computing the
convolution of two functions, it is very common to instead use the Fast Fourier Transforms

32



to transform both functions g(u) and h(u), and multiply the results, and perform the Inverse
Fast Fourier Transform (which is almost the same algorithm as the Fast Fourier Transform) in
order to obtain the same result as convolving. This simplifies computation and actually reduces
runtime from O(n2) to O(nlgn). This is especially the case for the Gaussian kernel. Note that
this isn’t necessarily applicable to the Bilateral filter because it is NON-LINEAR and can’t be
represented as a convolution.

3.11 Deconvolution

This is the idea of taking an image that has been convolved and deconvolving it to get the initial
signal. This is particularly useful for places where certain convolutions have taken place that are
unwanted and we want to remove them. Take for example motion-blur that happens because a
camera was moved during the taking of a photo – it can be represented as a convolution.

P ∗M = F

M represents the Motion Blur as a Convolution, P represents the initial photo, and F represents
the final photo outputted. We can determine M by using the gyrosensor on the phone to find
how the phone was handled during the taking of the photo. We have the final result G as well,
but we want to get the initial P to get the photo without the motion blur – let’s use the Fourier
Transform and the theorem regarding convolution to help out:

P ∗M = G

F(P )FM = FG

Thus, we can state that the initial photo P must be defined as:

P = F−1(
FG
FM

)

This is a great approach to getting the initial image back – however this is a bit too ideal because
it annoys any notion of noise that can occur. Note that there is going to be additional noise
introduced during the motion-blur because the image is changing while it’s being captured with
a shaky camera (and in general, noise from the image sensor)! Let’s add some noise to the
problem by noting the following where µ refers to noise:

P ∗M + µ = G

Unfortuantely, the approach above simply doesn’t work because applying the Fourier Transform
with all this noise creates too much noise (the signal is overwhelemed by noise). This is actually
the case for two principal reasons:

1. When M = 0, we end up getting an undefined result plugged in the Fourier Transform
which makes it unrecoverable. Note that it’s not unreasonable for the Fourier Transform
at a particular point to be 0 (note that I’m choosing to avoid indexing, but it’s assumed
M is a matrix and so it can be indexed with M(m)(n)).

2. The motion-blur filter we assign to at the start is a low-pass filter on its own. This is
becuase the motion-blur filter, broadly speaking, is getting rid of the higher frequencies, or
the ones that contribute a lot more to the specifics of the image. This means that broadly
speaking, it is actually VERY likely for it to be 0 at certain points.

Both of these properties really screw with adding TOO much noise in the image (our image
will end up looking like a ’70s TV when there’s nothing on it). We can define a new type
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of deconvolution to handle this called Weiner Deconvolution. I won’t really get into this
because it’s a bit too mathematical and not necessary, but if you are interested please check out
Shree Nayar’s 12th video in the Image Processing playlist around the 8-9 minute mark for more
information on how we can introduce a different type of deconvolution to deal with the added
noises in the image, and ideally rid it of some of the motion blur. Do note that no solution is
perfect, so the ultimate result will have some added noise somewhere in the result no matter
how much we try to prevent that, but broadly speaking, it’s effective at it’s job and produces a
more clear image!

3.12 Further Learning

There are many good resources to learn more about this, but I’ll only list the ones that I used
and found particularly helpful.

• First Principles of Computer Vision’s series of Image Processing - this is an
oustanding lecture series. A lot of the content I mention including formulas and intuition
is from this series. Please watch it!

• College Friendly’s Digital Image Processing Series - another stellar lecture series.
It includes more information beyond image processing, and also goes a bit too in-depth
(for purposes of this notes) in things like examples and exact methods, but it’s also a great
place to look at.

• Szeliski’s Computer Vision and Algorithms Texbook - this is a great textbook, but
I didn’t really use the sections in this textbook for this. Definitely use this textbook if
you’re interested in computer vision though!
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4 Edge Detection

Note that Edge Detection is one of the most important yet oldest topics in computer vision so
I will be discussing many different styles of implementation for this. Normally edge detection is
done in order to find edges, but more importantly to export the edges as a feature for various
machine learning models. You may find it pretty intuitive - if we want a model to perform
image segmentation and object recognition (check section 3.2 if you forgot this), it makes
sense that we should export the edges of an image as a feature so the model can try and discern
what lies “within” edges, what lies “outside” of edges, and which edges are used to characterize
noise and unimportant things (shadows, background noise, etc...)

4.1 Edge Detection using the Gradient

Let’s first start this section by acknowledging what the gradient is. Assume a multivalued
function f(x, y), we define the gradient as:

∇f =
[
fx fy

]T
Note that indices indicate partials in this case. We can also define the notion of magnitude (S)
and orientation (θ) of the gradient vector by saying:

S = |∇f | =
√
(fx)2 + (fy)2

θ = arctan(
fy
fx

)

Note that the θ being defined the way it is is a product of how we define the direction of the
gradient in Multivariable Calculus. That being said, we can also note that if the magnitude of
the gradient is large, that means the f(x, y) changes significantly in the nearby region. Let’s try
to discretize this in order to talk about applying this as an image, and do this by constructing
a 2x2 filter/convolution matrix f instead of a multivariate function noting that ϵ is the distance
between the two pixels:

f =

[
fi,j+1 fi+1,j+1

fi,j fi+1,j

]
fx ≈ 1

2ϵ
((fi+1,j+1 − fi,j+1) + (fi+1,j − fi,j))

fy ≈
1

2ϵ
((fi+1,j+1 − fi+1,j) + (fi,j+1 − fi,j))

Note that these are basically just using discrete equivalences to the partial derivative. For the
fx case, we are simply computing the difference of the right column and left column in both
rows (effectively seeing how much columns change going forward in the x-direction). The same
thing is true for the fy case. The fraction 1

2ϵ
is because we are just averaging the differences of

the intensities of the pixels (and since there are two, we need the fraction 1
2
).

We can actually, as you may have guessed, implement this as convolution. Note that because
convolution flips prior to computing the “dot product” or pairwise summation between the filter
and image, we need to flip the filters for fx and fy in both the vertical and horizontal directions
(note for this case that ϵ = 1)

fx =
1

2ϵ

[
−1 1
−1 1

]
fy =

1

2ϵ

[
1 1
−1 −1

]
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First, note how this makes a lot of sense (I won’t go into this, but the math behind that matrix
should show how we’re checking the differences in the X and Y directions). Second, let’s discuss
some famous well known gradient-based operators based on the general idea I introduced above:

• Roberts Filter - this is a 2x2 filter which is somewhat based on the gradient but has more
of a focus on diagonals - note how changes in the positive-45-degree angle are denoted as
changes in X while changes in the negative-45-degree angle are denoted as changes in Y:

fx =

[
0 1
−1 0

]
, fy =

[
1 0
0 −1

]
• Prewitt Filter - this is a 3x3 filter which is almost just a 3-d analogue of the gradient
filter initially introduced:

fx =

−1 0 1
−1 0 1
−1 0 1

 , fy =
 1 1 1

0 0 0
−1 −1 −1


• Sobel Filter - this is very similar to the filter mentioned above (and can scale up to 5x5
as well but I won’t go into that) - this particular filter, as you will notice, will focus a lot
more on horizontal and vertical edges as opposed to diagonal ones because of where the 2
is placed:

fx =

−1 0 1
−2 0 2
−1 0 1

 , fy =
 1 2 1

0 0 0
−1 −2 −1


For some of the larger filters, sometimes we might convolve the filter with the Gaussian in order
to have a more smoothing effect (to make things less susceptible to noise). Speaking about that,
let’s talk about limitations of the aforementioned gradient-based filters. We have a few main
concerns:

• Localization - the smaller filters are better for localization while the larger ones aren’t
and this follows naturally because the smaller filters check a very small range of pixels.
This means that noise in the surrounding area of a pixel would impact the larger filters
but not the smaller ones.

• Noise Sensitivity - both large and small filters are susceptible to noise, but naturally,
smaller ones are significantly more sensitive because they’re analyzing a smaller region.

• Detection - broadly speaking, the larger ones are better for edge detection because edges
tend to be “big” in many real-life images.

Let’s discuss how to use the filter. When convolving this with every single pixel, we will get
a “number” (which represents the derivative in both directions). To get some more context,
the “gradient-based filters” are checking the magnitude of “change” in individual directions.
In order to perform further analysis, we compute the total magnitude of the gradient noting
|∇f | =

√
f 2
x + f 2

y . However, almost every single pixel is going to return some type of value, so
how do we pick the ones that form an edge versus the ones that are “small” enough to not really
be considered one... that brings us to thresholding!

• Standard Thresholding - this is basically picking an arbitrary T as a threshold and
making something an edge accordingly:

|∇f(x, y)| < T → NOT EDGE

|∇f(x, y)| ≥ T → EDGE
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• Hysteresis Based Thresholding - hysteresis basically means checking the surrounding
region as well to determine something. For this, it means we use two thresholds T0 and T1

|∇f(x, y)| < T0 → NOT EDGE

T0 ≤ |∇f(x, y)| < T1 → EDGE if 4 or 8-adjacent pixel is DEFINITELY an edge

|∇f(x, y)| ≥ T1 → DEFINITELY AN EDGE

Note that 4-adjacency and 8-adjacency is defined earlier in Section 3.4 as being the surrounding
neighboring pixels.

Let’s talk about a practical implementation. Practically speaking, we would compute the mag-
nitude of the gradient by using both the fx and fy filter and performing the pointwise operation
of squaring each pixel, adding, and taking the square root. Then, we can threshold each value
by whichever thresholding scheme we choose to implement, and go further from there. If you
would like to see an implementation of the Sobel Filter, check my repo.

4.2 Edge Detection using the Laplacian

Warning: this can get a lot more mathy, but for sake of discussing the idea, I will
omit a lot of the math - please watch Shree K Nayar’s video in the First Principles
of Computer Vision available HERE

Let’s now define the notion of a Laplacian. For those who recall from multivariable calculus,
this is:

∇2f = (fx)
2 + (fy)

2

Note that in a very pure sense, an edge is a line across which we observe a rapid change in
the intensity values of a pixel. This means that we notice some type of positive derivative. In
a second derivative sense, this is denoted by a zero crossing because the growth of the peaks
during the first part of the increase, and then falls during the second part of the increase.
We can use the previous notions of a discrete gradient or derivative to now define the Laplacian
Filter by taking the filters of fx and fy and approximating a new discrete operator! I won’t go
through this, but it isn’t particularly challenging. The main thing to note, however, is that we
need a minimum of a 3x3 matrix instead of a 2x2 matrix (this should be relatively obvious, but
we need to have 4 2x2 matrices located somehow in the matrix to be able to compute a 2nd
derivative). There are some modifications we do, but a standard version of the matrix we end
up getting is:

∇2 ≈ 1

6ϵ2

1 4 1
4 −20 4
1 4 1


You should get the broad paradigm shift now that instead of trying to find the change between
the left column and the right column, we’re comparing the left and right columns with the center
(and vice versa for rows). Here are some considerations for how we run the Laplacian:

• Negative Values - note that the Laplacian, more particularly for non-edges, will return
values that are actually negative. We deal with this by instead mapping the values from
[−128, 128] to [0, 256].

• Zero Crossings - note that the zero-crossings idea is then used to determine, from the
initial Laplace filter, which of the components are edges. This is done by checking where
rapid changes across the x-axis (or in this case, across any edge) take place, and marking
those as edges.
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This is hard to explain without graphics, so check out my repository and Shree K Nayar’s video
to learn some more.

4.3 Gaussian Derivative and Laplacian of Gaussian Filters

Here is where we introduce an idea that was briefly mentioned earlier, which is Gaussian Convo-
lution. The issue with trying to detect edges is that we, are purposefully trying to find changes
in the input signal, and then classify those as edges. However, noise can also be characterized as
changes in the input signal. That raises a dilemma because when we run a Gradient or Laplacian
based filter on the input data, we end up with a huge mess because all the noise also significantly
contributes to the derivative.

We deal with this in various ways, but let’s start by addressing the first – running the Gra-
dient and Laplacian-based filters on the Gaussian Kernel of the image. This smooths the image
first, and then adds on the edge detection. While this screws slightly with edges because it
smoothens out, so any sharp edge becomes slightly smoother and relatively less “obvious” edges
become harder to detect, it rids the impact of noise. Let’s formulate this:

∇(nσ ∗ f)

However, convolution is associative, and the ∇ operator is nothing but a convolution, and so,
we can claim the following:

∇(nσ ∗ f) = ∇(nσ) ∗ f
This means we can simply compute the ∇ of the Gaussian and apply that as a convolution. This
would make the convolution one step (instead of 2) because the magnitude of the gradient of
the Gaussian isn’t particularly challenging to compute. We can then simply continue with the
thresholding process and determine edges that way without worrying about noise. Similar logic
applies to the Laplacian:

∇2(nσ ∗ f) = ∇2(nσ) ∗ f
This ultimately makes a single-operation filter. When done with a Gradient-based Detector,
we call the final single-operation convolution Gaussian Derivative (or Gradient of Gaussian)
filter. When done with the Laplacian filter, we term it the Laplacian of Gaussian filter. Let’s
start by comparing the two:

• Location, Magnitude, and Direction - the Gradient based edge-detector gives you
location, magnitude, and direction while the Laplacian only provides location of the edge
(because Gradient is a vector)

• Detection - the Gradient based edge-detector is thresholded using either standard or
hysteresis based thresholding. On the other hand, the Laplacian relies on the zero-crossings
– you do need some type of way to measure the “steepeness” of the zero-crossing to verify
if it is actually an edge, but this isn’t as rigorous as thresholding.

Now, these edge detection schemes work great, but let’s try to combine them to make something
that works even better by harnessing the strengths of each!

4.4 Canny Edge Detector

This is arguably the best and most widely used edge detector in Computer Vision. This basically
combines all the filters mentioned above in some capacity: the Gaussian Kernel, the Gradient
Kernel, and the Laplacian Kernel. Let’s walk a bit through the steps of the Canny Edge Detector
and briefly mention why it’s valuable! Note that I refers to the input image and F refers to the
output.
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1. We run the 2D Gaussian to smooth out the image. We can pick σ based on how much we
want to smooth out the image (standard deviation of the normal distribution).

F = nσ ∗ I

2. We compute the Image Gradient using some type of Sobel Operator (usually 5x5). This
is the equivalent of the Gaussian Derivative filter.

F = ∇(nσ) ∗ I

3. We compute the magnitude of the x and y directions using Euclidean norm:

|∇(nσ) ∗ I|

4. We then find the gradient orientation at each pixel by constructing a normalized (unit)
vector in the direction of where the edge should be located at that point.

n̂ =
∇(nσ) ∗ I
|∇(nσ) ∗ I|

5. We now compute a one-dimensional Laplacian (which is basically like the 2nd derivative)
along the direction of the unit normal vector

6. We check if there is a zero-crossing in that direction, and if so, claim that pixel must be
an edge.

This is particularly helpful because it uses both techniques to find the likely places where there
are images, and doesn’t allow noise in other regions to corrupt the edge detection algorithm as
much because it uses the Laplacian filter only in the direction of the edge. Check out my repo
online for an implementation of this!

4.5 Corner Detection

Corners are defined as a point where two edges in an image intersect. We need to use the
derivatives of the image (previous filters mentioned) in order to find where corners are located.
We first start this task by thinking of different types of images:

• NO EDGES - such an image would have no real “edges” anywhere (basically a unicolored
image), and so, we can say that the set of image gradients if potted as a vector (Sx and
Sy) would ultimately yield a circle very close to the origin because their magnitudes would
be relatively small.

• ONE EDGE - there is no corner in this image, but the one edge means that there would
be high gradients going in one particular direction. This would mean a large circle-like
cluster near the origin (as mentioned above), but also a collection of gradient vectors that
lie along one particular line because there is a general change in a given direction.

• TWO EDGE / CORNER - this would normally lead to some ellipsoid/circle looking
figure where we get the cluster near the origin, but two lines protruding from the origin
going out in relatively orthogonal directions (otherwise the corner is more like a “fat edge”
if that makes sense)
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From this, we fit an ellipse onto the collection of vectors – this is done through finding the largest
moments in the data – this has a very clear correlation to Principal Components Analysis where
we’re identifying the vectors where there are the highest amounts of change. Let us now denote
the ellipse with semimajor axis length λ1 and semiminor axis length λ2. We can classify no edge,
edge, and corner using this:

• FLAT: λ1 ≈≈ λ2 and both λ1 and λ2 are relatively small

• EDGE: λ2 >> λ1 or λ1 >> λ2 means there is an edge

• FLAT: λ1 ≈≈ λ2 and both λ1 and λ2 are significantly large

We can also introduce the idea of the Harris Corner Detection which is the above idea
formalized into a “is this a corner or not?” dynamic using the equation:

λ1λ2 − k(λ1 + λ2)
2

We can define some type of threshold R and if the value from above is less, then it’s not a corner,
and otherwise, is. However, a common issue we run into is having too many peaks. We want
singular points to be corners, not a whole cluster of points, and that topic lends nicely to the
idea of non maximal suppression through the following steps:

1. We slide a window of size k over the image, and check all the pixel values in that window.

2. If there are any values that are greater than the one we are currently checking, we set the
current one to 0.

3. If not, we just move on.

Note how this basically just only lets the “maximums” in a general area (window of size k)
remain, and suppresses the non-maximums !

4.6 Boundary Detection

Boundary detection is very similar to edge detction, but instead really hones in on trying to
connect the parts of the image to make more sense of what’s in the image. For example, boundary
detection would try and get rid of the unnecessary noise you would get after performing edge
detection (like the noise you would see in my GitHub Repo for any of the Edge Detection
algorithms). Let’s first talk about the steps we would take from an image to get to boundary
detection:

1. Edge Detection - this is detecting the edges using some type of filter such as the Canny
filter - this is a natural first step

2. Thresholding - here we try to apply the thresholding procedure to get rid of some of the
noise and amplify the parts of the image we believe are actually edges.

3. Shrink and Expand - we run a binary image processing technique in order to further
get rid of noise

4. Thinning - since thresholding assigns a binary value to each edge, it often makes the
edges appear more bold than they should be so we use thinning to try and make the image
less bold and reduce the width of some of the edges

5. Boundary Detection - it’s from here where we need to use boundary detection to go
further in the edge detection algorithm so let’s get to work.
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This problem basically boils down to least-squares and a lot of linear algebra trying to decide
which “formulation” of lines or curves is best for the edges we have. Let’s first start by acknowl-
edging what it’s like for the case of two points when we’re trying to fit a line of best fit between
them:

y0 = ax0 + b

y1 = ax1 + b

Note that we can reformulate this as:

X =

[
x0 1
x1 1

]

Y =

[
y0
y1

]
X

[
A
B

]
= Y

Note that although for this case since we have 2 datapoints and 2 results, the result is pretty
easy to solve (as in, so long as x0 and x1 are different points, the system is invertible so we
can just take the inverse of the square matrix and determine the coefficients), this isn’t likely
always going to be the acse. More times than not, the system will be overdetermined with less
unknowns than observations (or edges), and so, we need to note the following technique to solve
this:

Ax = B

ATAx = ATB

(ATA)−1ATAx = (ATA)−1ATB

x = (ATA)−1ATB

Note the key observation that ATA is guaranteed to be a square, invertible (symmetric) matrix.
This is essentially performing a column-space projection on B, and then solving the system. Note
that if we want to incorporate a higher degree of polynomials, we can use the same approach by
defining a wider matrix and having more coefficients. This is great because now we can always
get “curve” or “line” that best fits where the edges are located, and have performed one of the
first tasks of boundary detection!

4.7 Active Contours

Let’s define an active contour as taking a generic random (or human-drawn) countour and
iteratively deforming it to match a boundary of an image. Think of drawing a random circle
around a coin on a blank background, and trying to iteratively get the circle to deform to the
boundary of the coin. This is particularly useful for videos (because it can track object move-
ment), and furthermore, for medical analysis such as analyzing scans and things of that nature.
Now, you should be noticing something – this is exactly the same idea as “backpropagation” or
otherwise, gradient descent.

Let’s force our contour to go in the direction of the of the maximum gradient, and thus, maxi-
mize the sum of the gradient magnitude square (because we want to go in the direction of the
most change):

We want to maximize gradient which is |∇I|2

Let’s also note that convolving the gradient with the Gaussian kernel (blurring up the image),
is going to “smear” the gradient around a bit that way the gradient is more present in the
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image. This is particularly important in cases where the initial contour is located in an are
which has few edges around it; we want to blur the edges so they can “reach” the area of the
initial contour! Note that I(vi) refers to a function of the vector < x, y > where if the image
is f(x, y), I(< x, y >) = f(x, y) – basically, this function I takes in a vector of the x and y
coordinates and outputs the intensity value. This is what we want to effectively maximize:

n−1∑
i=0

|∇nσ ∗ I(vi)|2

Thus, we also want to minimize the negation (helps a bit later down the line):

Eimage = −
n−1∑
i=0

|∇nσ ∗ I(vi)|2

We call Eimage as the image term. Now, we’re also going to try and make the contours elastic
and smooth (basically, we want the contour to behave like a rubber-band). And in order to do
this, we need introduce the idea of Internal Bending Energy. This is a physics notion which
I will simply define and not explain:

The elastic energy of the contour is Ecountour = αEelastic + βEsmooth

Eelastic = |dv⃗
ds

|2

Esmooth = |d
2v⃗

ds2
|2

Note that elasticity is the speed and smoothness is the acceleration in terms of multivariate
calculus. We can discretize these noting the definitions of discrete change and derivatives, and
use them both to make a new term called the total energy of the contour:

Etotal = Eimage + Econtour

Now, let’s try to define a greedy algorithm to use to iteratively change the contour to match the
contour of a boundary!

1. Sample - we first need to (obviously) sample where the contour is located to get certain
points - we can pick the sampling based on how the contour looks, and how much noise
the image has.

2. Adjustment - we can adjust vi to a position within a window W (same idea as a discrete
convolution) where the function Etotal is minimized.

3. Stop or Repeat - if we reach a point where the sum of all energy/motions of the contour
points is less than a particular threshold, we stop, or else we continue the process again.

This is really good! We now have an algorithm to iteratively go from a contour and shrink it to
the actual boundary of an object! Let’s discuss some complications!

• Multiple Boundaries - note that since we’re also trying to minimize the internal bending
energy, we are forcing our contour to behave like a rubber-band. We can adjust α and β
to determine how much like a rubber-band the contour behaves.

• Precision Limitation - also note that the blurring I referred to the beginning is only so
effective – the initial contour needs to be placed in the right general location near some type
of boundary or else it won’t detect which direction to go to in order to get the boundary
where it should be.
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• Other way around? – if we, instead of computing the minimum total energy in the
window, compute the maximum total energy, we would be reversing the effect and finding
the edge on the other side of the contour!

• Additional Constraints - we can add more constraints in the total energy component
if that’s something you think would fit well for your image. If you know your image, for
example, is going to be looking a certain way or behaving a certain way, you can try and
force the active-contour algorithm to use that to make the result look more like what you
want it to look like.

4.8 Hough Transform

The Hough transform notes a simple technique to change lines to points and points to lines. It’s
particularly useful for finding a line in a set of various different points. Let’s first start by noting
that a line can be described as:

y = mx+ c

However, we can reformulate this to become:

c = mx− y

This allows us to go from the image space (of x-y coordinates in an image) to the parameter
space (possible parameters that could connect the various x-y coordinates. You may notice that
an (x, y) input in the parameter space corresponds to a set of lines characterized by y = mx+ b
potted on the (m, c) parameter space. The Hough Transform utilizes this fact to replace plot-
ting coordinate-vectors in the (x, y) space with (m, c) in the parameter space that represent all
lines passing through (x, y), and so, if we repeat this process with multiple (x, y) points, the
intersection of those produces a single (m, c) point that represents a single line (not point).

We can now introduce the idea of an accumulator array which transforms the matrix repre-
senting an image to a matrix of the parameter space. For every single edge represented as a
point in the image space, we augment the corresponding parts of the parameter space associ-
ated with the edge in the image space by 1. We obviously first need to initialize the array to all
0’s. We then pick the parameter-coordinate representing the highest numerical value in the array.

For sake of easing the math I won’t go into this, but it’s very common to use the below formu-
lation instead: x sin θ − y cos θ + ρ = 0 This avoids some of the issues of the slope being “too”
large (which represents an issue if the line we want is supposed to be vertical). We can use
a polar-based approach (ρ, θ) in order to have less such issues. Note that instead of mapping
points to lines, it instead maps points to sinusoids/curves. This is also something that is very
easily transform-able to circles or other lines/curves depictable with two parameters. Let’s now
introduce the General Hough Transform to find images that may not easily be able to be
depicted with 2 parameters, but instead by a model. Let’s first assume we get some type of
“model” which refers to an image which we want to find in an image map. We then need to
construct the “Hough Model” for the associated image:

1. Edge Map the Model - if we’re given a model image to use to base the Hough Model
on, it is imperative to ensure that we are also checking hte

2. Pick a reference point - we need to use vectors to construct the Hough model, and so,
need a reference point to base the “tails” of the vectors. This reference point is typically
somewhere in the center of the object.
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3. Mark all vectors going in the same direction - for all vectors that are going in the
same direction, we construct a ϕ table. All vectors with the same ϕ (denoted as angle with
the horizontal) are grouped together.

4. Create an accumulator array - this array is a direct copy (almost) of the image we’re
scanning for, except with different resolutions depending on what specifically we want. The
goal is to iterate and go through the accumulator array, and count the number of times
the surrounding vectors constructed from the edges match the results of the phi table

5. Analyze the maximums of the accumulator array - we now need to find the local
maximum of the accumulator array to make any sense of the

Now, what does this mean? This means that if we run the General Hough Transform with a
certain model of a tree (for example) on an image named B. C which is the output of the
GHT on B will result in an image which is colored/shaded in such a way which indicates with
likelihood how certain we are points are the center or reference point of that particular object.
This means if we pick the reference point to be the root of a tree and we place multiple of
those trees in an image, all the roots of those trees will be shaded or denoted as being possible
reference points.

4.9 Scale-Invariant Feature Transforms (SIFT) Detectors

We need to find a way to “find” something in another image. You might recall from image
processing (Section 3.9), the idea of Template Matching and Correlation which we can use to
find another “template” in a broader “image”. However, we note several important problems
with generalizing that idea:

• Image rotated - if the template is rotated within the image, it would screw with the
correlation metric and template-matching scheme

• Image zoom - if the image is zoomed in or zoomed out too much, it would also screw
with the correlation metric (because the individual pixel values would be off).

• Image complication - if the image is too complicated or just has too many details, small
changes in that may affect how accurate the correlation metric is.

• Image occlusion - by far the hardest thing to deal with, what happens if the image is
blocked up in certain areas? That would definitely screw up with a lot of the template
matching and correlation metrics I spoke about earlier.

One possible, but very crazy solution is to make many small templates from the initial image,
and have them rotated and zoomed in at different points, and compute where the individual
templates are located in the big image. However, that is stupid and computationally intensive,
and not to mention, stupid. Let’s introduce the idea of the SIFT detectors as a better approach
for finding templates in an image! Let’s note some important truths about finding templates in
an image first:

• Blobs as Interest Points - we need to analyze “blobs” in an image, we can’t simply be
analyzing corners, edges, lines, or pixels. Otherwise, this just becomes way too susceptible
to noise, and practically indiscernible. Such a blob needs to have a particular location,
size, size, orientation , and description.

We’ll talk about detecting blobs in the next section. Note that the term “Scale Invariant Feature
Transform” is a direct extension of the idea of being able to detect certain features irrespective
of appearance and scale (size and angle).
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4.10 SIFT Detector: Detecting Blobs

Note that when I refer to “extrema”, “minima”, and “maxima”, they are all in
reference to basically the same thing which is maximum distance from the origin
– these distances are positive, but the displacement/y-coordinates are negative, so
keep that in mind.

This particular topic is challenging to understand, so I want to be careful. Let’s first start
by trying to find “blobs” in a 1-dimensional signal. There is more structure to how this is per-
formed, and you can learn this in video 14 of the Edge Detection Youtube Series from Shree K
Nayar. Let’s start by defining the input as f(x) and proceed through the following steps:

Signal: f(x)

Normal Distribution: nσ

Laplacian of Gaussian:
∂2nσ

∂x2

Convolve with Signal:
∂2nσ

∂x2
∗ f(x)

Understand that the second derivative of the normal distribution divides a factor of σ2 which
makes the peaks of the signal significantly smaller. In a traditional analysis of the second
derivative we’re looking for zero-crossings, so this doesn’t really matter. But, for analyzing
“blobs”, it does matter, so we use a variant of the LoG for single-dimensional signals where we
normalize by σ: it is termed, “sigma-normalized 2nd derivative of Gaussian”:

σ2∂
2nσ

∂x2
∗ f(x)

We want to find the σ which maximizes the distance from origin of the above function because
this finds the “width” of the blob. The mechanics of how this works won’t be explained, but
understand that we’re choosing the parameter to make the normal distribution (second step
from above) roughly match the width of the signal, and when we perform the above process, a
general truth is that when such an alignment between the normal distribution and signal are
obtained, the distance from the origin is maximized.

The conclusion is that local extrema in the (x, σ)-Space represent blobs. This means
that if we imagine the sigma-normalized 2nd derivative of Gaussian defined as a function of x
and σ, the extrema (more particularly the minima) represent blobs. This idea can be really
nicely extended to 2 dimensions!

Laplacian = ∇2f = (fx)
2 + (fy)

2

Normalized Laplacian of Gaussian: = σ2∇2nσ

The Normalized Laplacian of Gaussian or NLoG is what we use for blob detection in two
dimensions, and performs a transformation from the image space to the scale space which is
an extension of (x, σ) to (xy, σ). We can then treat applying the NLoG as iteratively computing
the maximum of the argument of the same function for different levels of the Gaussian kernel of
the image. Imagine taking the images ordered from (σ0, σ1, ..., σk) where k represents the scale
(usually goes until the width of the image), and then computing the peak/max-argument of the
NLoG on each of these images, and finding the maximum between all of them. This would tell
me at a given (x, y) point, the size in radius of a circle at that point, σ, of a given feature located
there. This feature could be, broadly, any blob or detectable “difference” in the image at that
point. If we can’t find any conclusive maximum of the NLoG at any particular σ, this would
tell us that there is no particular feature at that given (x, y) point.
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4.11 SIFT Detector (DoG and HoOG)

Difference of Gaussians (DoG) and Histogram of Oriented Gradients (HoOG) are
techniques we use to augment the basic idea of a SIFT detector which I mentioned earlier. Let’s
define them:

• Difference of Gaussians - the following idea will not be proved, but is used for computing
the Laplacian of Gaussian faster:

DoG = nsσ − nσ ≈ (s− 1)σ2∇2nσ

We can now notice that instead of computing the Laplacian of Gaussian at differing σ by
just picking different multiples, we can instead imagine taking some image denoted F , and
computing a tensor (vector of vectors) denoted as a large vector S which is composed of
the image with various amounts of the Gaussian kernel applied on it in multiples of the
σ – first σ, then sσ, then s2σ, all the way until skσ. Importantly note that we can take
each of these various Gaussian kernels at different σ and compute the differences of them
in order to get “approximate” Normalized Laplacians of Gaussians (NLoGs) off by some
sort of factor of (s− 1) as mentioned by the above idea.

• Histogram of Oriented Gradients - this broadly refers to computing the angles (of the
gradient) of some image in a discrete region, and placing them on some sort of histogram.
The goal is to compute the principal orientation by finding the most common angle.
This would denote the “angle” that a feature from an input image is presented as in the
resulting image.

4.12 SIFT Detector - Descriptor and Full Process

Let’s use the techniques we mentioned earlier to make the entire SIFT Detector:

1. Extract Interest Points - We take an image in its discrete-sampled form. Note that
this means the image can be in RGB format, and more importantly, it isn’t necessary for
an edge-detection filter to have been applied to the image.

2. Difference of Gaussians 1 - We then apply Gaussian filters with different σ’s based on
a factor of s – it isn’t important what the factor is, just that we continue from s0 to sk.

3. Difference of Gaussians 2 - We then use the Difference of Gaussians approximation
for NLoG and obtain k− 1 different outputs which represent the Normalized Laplacian of
Gaussians at each individual σ.

4. Extrema - Recall that now we want to compute where the extrema (particularly the
maxima because we care for argument/distance from origin) are in order to find the general
“radii” of certain features. So now we run a 3x3x3 extremum filter (if it’s the maximum,
then keep the value, or else, make it 0).

5. Threshold - Remove some of the weak extrema by creating a threshold on certain radii
that meet a distance criteria.

Well, what do we do from here? Let’s first start by trying to summarize SIFT Features in a
meaningful way. We first need to acknowledge a couple of things:

• We want scale-invariance (thus, we need to be careful about adjusting with Histogram of
Oriented Gradients)

• We want shift-invariance (thus, we need to normalize images with respect to the σ used in
the Difference of Gaussians plane where the feature is detected).
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• We do NOT want lighting or things of the sort to impact the general description of the
features. This means using the magnitude of the gradient is not a great approach.

So, in order to take a SIFT feature and describe it in a good way, we use histograms of the
orientation of the gradients of the feature. This means that we take a general feature (which is
represented as a “blob” in an image represented by a circle of some given radius r), and then
place all the angles of the gradient in a histogram. We can use many different methods in order
to compare the different SIFT features. Assume for this case the histogram is represented by
two arrays of data of length N , H1(k) and H2(k).

• L2 Distance

d(H1, H2) =

√∑
k

(H1(k)−H2(k))2

This basically measures the distance between the two vectors – when it’s 0, we have a
perfect match.

• Normalized Correlation - the formula for this can be found earlier, but this is a 2
dimension version of discrete convolution but the subtraction is reversed. We also divide
by the amount of “energy” in the picture to normalize the output. The larger the match,
the higher the correlation. We get a perfect match at d(H1, H2) = 1.

• Intersection
d(H1, H2) =

∑
k

min(H1(k), H2(k))

The larger the metric the better the match.

There are many famous applications of the SIFT Detector in things like panorama stitching,
feature-extraction, and image-analysis. One of it’s biggest drawbacks is in changes in 3d view-
points. If you take a photo from different angles, the SIFT detector will have trouble detecting
the object.

4.13 Overview of Edge Detection

This is the most dense of the sections so far with proper applications, and so, I want to be
careful to make sure I quickly recap on the things that are pretty important to remember from
this section going forward:

• Gradient Edge Detector - you do not need to know anything specific, just note the
basic ideas of Gradient-based Edge Detectors, and remember some examples of famous
versions such as the Roberts, Prewitt, and Sobel filters.

• Canny Edge Detector - you should have a general idea of what is going on in the Canny
Edge Detector since many implementations in coding modules require you to manually
“program” certain components. The steps are:

1. Run a Gradient-based filter

2. Compute magnitudes and angles of gradient

3. For each resulting pixel, compute number of zero-crossings in a single-dimensional
Laplacian (2nd derivative) in the direction of the gradient

4. Threshold the final result
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• Basic Boundary Detection - recall the notions of boundary-detection and how it differs
from edge-detection (computing objects/segments instead of just what could “possibly”
be an edge), and also remember the corner-detection algorithms we used.

• Hough Transform - recall the Hough Transform and the Generalized Hough Transform
and how a transformation from the image space to the parameter space (in both vector
format or in numerical format) can make it easy to find the boundary of an image given
we know the input it might look like.

• SIFT Detector - recall the ideas of using interest points to detect blobs, the Difference
of Gaussians, the Histogram of Oriented Gradients, and a general process of how they all
come together so we can broadly detect features. Also recall how we represent the features
as a histogram of angles of the gradient.

Most of these should be more than enough to understand edge-detection principles. I won’t
include a further information section since almost all of this information was taken directly from
here.

5 Image Stitching

Suppose we have a bunch of photos of a big scene taken in angles from eachother and we want to
combine the photos to make one big photo. Think of an angled panorama on your smartphone.
This is the point of image-stitching!

5.1 Intro to Image Stitching

As aforementioned, image stitching is the process of stitching various images together in order
to make a bigger photo. This is especially important in the case where the images are angled,
and more importantly, contain some type of repeat/overlap within them. These algorithms are
important for panoramas, and taking many photos in different angles and trying to present them
in a 3d format – take, for example, the Google Maps Street View. Let’s divvy the task of image
stitching into two separate tasks:

1. Overlying - this is the process of taking many images and overlaying them to produce
a single image. We often do this by taking SIFT descriptors (the histogram of angles
of gradients of a particular region as described in the earlier section), and find where
similar SIFT descriptors lie in the other photo(s). We then need to find some type of
transformation to warp the initial image to neatly match with the other images.

2. Blending - normally the above process unfortunately results in an image with lines going
through it at the points of “blending” which often makes the image look less pleasant
and divided. Thus, we want to blend out those lines in order for the image to look more
“cohesive”.

5.2 Affine and Projective Transformations

Please ensure you are familiar with typical linear algebra transformations using 2x2 matrices
such as:

• Rotations

• Dilations

• Skews
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• Make sure you also understand how a linear transformation is equivalent to a change of
basis.

One major drawback of 2x2 matrices is that translation is impossible. There is simply no “space”
to add that constant in the matrix. Let’s introduce the idea of homoegeneous coordinates
in order to do this. Define the homogeneous representation of 2D point p = (x, y) is a 3D point
p̄ = (x̄, ȳ, z̄) where the third coordinate z̄ ̸= 0 is fictitious such that:

x =
x̄

z

y =
ȳ

z

Imagine a 3x3 matrix denoted as A operating on this homogeneous vector:

A =

a b c
d e f
g h j



Z = AY =

ax̄+ bȳ + cz̄
dx̄+ eȳ + f z̄
gx̄+ hȳ + jz̄

 =

a b c
d e f
g h j

x̄ȳ
z̄


Now, let’s try and construct a nice analog to the vector (x, y) – obviously in order to make x̄
and ȳ the same, we need z = 1, and so, the homogeneous coordinate equivalent to (x, y) would
be (x, y, 1). This means the transformation A is defined:

Z = AY =

a b c
d e f
g h j

x̄ȳ
1

 =

ax+ by + c
dx+ ey + f
gx+ hy + j


Notice that now we are able to add translation into our transformations. Importantly, many
times translations shouldn’t change the “multiplicity” of the coordinate by affecting the z factor,
so when making a translation or rotation or anything of the sort, we automatically define the
last rows to be (0, 0, 1):

Z = AY =

a b c
d e f
0 0 1

x̄ȳ
1

 =

ax+ by + c
dx+ ey + f

1


We define these types of transformations as affine transformations – this means that the
transformation preserves lines and parallelism while not necessarily preserving angles or dis-
tances/lengths. If we let the bottom row of the transformation NOT be (0, 0, 1), then we have a
projection transformation or projective transformation. This means that we are projecting
the vectors into a different subspace. For sake of being thorough, I will write the basic forms
of many “typical” affine transformations in the homoegenous coordinate method so we can see
how it works:

• Scaling: scaling a given vector by certain constant(s)sx 0 0
0 sy 0
0 0 1
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• Skew: smearing the image in a given direction (for this transformation, in the y direction,
take the transposition to do the opposite effect)1 mx 0

0 1 0
0 0 1


• Translation: moving the “origin” by some given constant (or moving all the set of points
by some given constant) – in this case constant is referring to some vector (tx, ty).1 0 tx

0 1 ty
0 0 1


• Rotation: assume the agnle we are rotating is θ, then the transformation is very similar
to the 2x2 version: cos θ − sin θ 0

sin θ cos θ 0
0 0 1


Note that we can compose the transformations by multiplying to achieve the combined effect
in reverse order. If you want to skew then scale then translate then rotate, you just multiply
rotate to translate to scale to skew and then multiply that all to the vector.

5.3 Computing Homography Matrices

Let’s first define homography as the idea of relating any two images of a particular plane
taken from different angles. The matrix defined to “relate” the two is called the homography
matrix! This enables us to perform image stitching of two images taken in different “views” of
the same exact plane.

I mentioned the pinhole projection model and lens formulation model earlier, so let’s take ad-
vantage of those to “convert” from one image space to another in order to combine the two
images! We need to first create some assumptions:

• The scene is far away from us. Earth is obviously not a plane, and so is no scene, but if
we imagine the scene as being “far enough away from us”, we can claim it’s a “plane at
infinity”.

• The SIFT detectors are relatively accurate and are easy to differentiate. If we have very
blurry images or images that simply don’t have enough SIFT information, this type of
image stitching technique simply will not work.

The goal of the homography is to construct a matrix to take the homogeneous coordinates of
one image and “warp” them into the coordinate space of another so let’s write out this equation
with a matrix h: xdyd

1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

xsys
1


Note that subscript s denotes source image coordinates and subscript d denotes destination
image coordinates. Also recall that any scalar multiple of the homogeneous coordinates are all
equal which implies that there is a restriction on the matrix in some form because it won’t be
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injective since it’s possible for the results to all be the same. We deal with this by normalizing
the matrix, and this is done by allowing a choice of 8 different parameters for the matrix and
a final parameter to be picked to normalize the magnitude of all the matrix entries to 1. This
means that we have 9 parameters in the matrix but 8 degrees of freedom.

It also turns out we only need 4 matching SIFT points in the images in order to compute
the matrix because we have 8 degrees of freedom (by Fundamental Theorem of Algebra, we need
at least 8 equations as a result, and so, the 4 matching points in both images count as 8 total).
I will begin doing quite a bit of math to explain the computation of the matrix, feel free to skip
and get to the final result as well if that’s what’s more important to you.xdyd

1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

xsys
1


Let’s use the notions of homogeneous coordinates to compute the coordinates x and y for a
particular instance i of corresponding points

x
(i)
d =

x̃id
z̃id

=
h11x

i
s + h12y

i
s + h13

h31xis + h32yis + h33

y
(i)
d =

ỹid
z̃id

=
h21x

i
s + h22y

i
s + h23

h31xis + h32yis + h33

We can rearrange this into a matrix equation by subtracting the left side from the right side and
obtain:

[
xis yis 1 0 0 0 −xidxis −xidyis −xid
0 0 0 xisy

i
s 1 −yidxis −yidyis −yid

]


h11
h12
h13
h21
h22
h23
h31
h32
h33


=

[
0
0

]

Note that this equation is for a single SIFT interest matching point which is why it’s actually
impossible to solve (there are too many unknowns). Note how when it’s visualized like this, it
might make sense why I said 4 interest points are enough to compute this matrix. For each
interest point, we can just take the above equation and stack it on top of eachother (take the
rows and just keep stacking). We can then get, in matrix form, the below equation:

Ah = 0 such that |h|2 = 1

Remember that the h being normalized is important to ensure that we don’t get repeat values
from the homogeneous coordinates. Also note that this type of problem is very famous across
math/science and can be modeled as the Constrained Least Squares:

min of |Ah|2 such that |h|2 = 1

|Ah|2 = (Ah)T (Ah) = hTATAh

|h|2 = hTh = 1

Let’s define loss function L(h, λ) such that:

L(h, λ) = hTATAh− λ(hTh− 1)
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We can take the derivative of the loss function with respect to h and set it equal to 0 to find the
minimum and obtain:

2ATAh− 2λh = 0

ATAh = λh

Note that this is basically asking us to compute the eigenvalues of ATA and the h we are looking
for is the eigenvector corresponding to the smallest λ of the matrix ATA.

Quick recap of the section because there is so much math: We care about taking
an image and warping it to another images coordinate space using the SIFT Descriptor features.
In order to do this, we need to assemble a particular matrix A which takes in each of the features
locations in the source image and destination image, and compute the eigenvector corresponding
to the smallest eigenvalue of ATA. We can take that eigenvector and then use it to reconstruct
the matrix that warps from the two image spaces by taking the first 3 entries and making them
row 1, second 3 entries making them row 2, and so on so forth to finish the matrix.

5.4 Outliers with RANSAC

One of the biggest issues we’ll have with SIFT Descriptors that I mentioned earlier is that
there will be outliers. Often times we will detect features in one image that aren’t prevalent
in the other, or features that don’t really exist. Recall that the SIFT Detector uses the notion
of “blobs” to find where general interest points are, but sometimes in different lightings and
different positions, certain things just appear like “blobs” when they aren’t, and certain things
won’t. Let’s discuss the Random Sample Consensus approach to dealing with outliers – it’s
also called RANSAC:

1. Randomly choose s samples. Typically s is the minimum samples to fit a model (in this
case, we need 4)

2. Fit the model to the randomly chosen samples.

3. Count the number M of data points that fit the model within some type of measure of
error e – recall we can use the constrained least squares approach discussed earlier to find
the closest we can get to the exact warping. We can pick e depending on the pixelation
and what we want for the model.

4. We repeat the above steps N times where N represents the number of interest points.

5. We choose the model that has the largest number M of datapoints that fit the model.

This basically just randomly selects the minimum of points necessary a certain number of times
to pick which random selection of minimum points works best for our use case. This is a really
good approach to use for SIFT features.

5.5 Warping and Blending Images

Warping an image is slightly harder than you would think – often times, the coordinates that
we get as a result of the trasnformation don’t really fit in an image frame because they might
be non-integers/decimals. Instead, we use an idea termed backwards warping which is where
we create an image-space for the resulting image (after warping), and take the inverse of the
matrix we found prior.

Quick mathematical note: although it might appear that Ah = 0 might make it impossible for
h to have an inverse, recall that h the vector and H the matrix are two separate entities. The
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matrix is composed of separating the vector into sections of 3. The matrix H is required to be
an invertible matrix because the transformation is a projection onto a separate plane (not line
or point), which means there can be no reduction in dimension or anything excess of the trivial
solution in the null space.

Thus, we take the inverse of the transformation we want to apply, and compute a weighted
average of the pixels at that index. So, if we take pixel p and perform the inverse and get
something that lies between pixels a,b, and c, then we weighted-average those up (depending on
how close the inverse of p is to those particular values) and obtain what the initial pixel was.
This technique is essentially combining the Nearest Neighbors and Interpolation techniques
while intelligently incorporating the inverse of the transformation!

I mentioned earlier, but there are often hard seams due to exposure differences and vignetting
which is when the outer parts of an image appear duller compared to the center because of the
light that enters through the lens. This can be solved by using a variant on a distance trans-
form which basically weights images closer to the edges of the image lower. What this means is
that when overlaying the images, the pixels that contribute the most are the ones distant from
the edges which allows for effects such as exposure-differences and vignetting to become mostly
negligible. Doing this all allows us to combine images neatly and seamlessly.

6 Facial Detection and Recognition

This section is about the computer vision behind facial recognition, and will briefly dive into
some other topics pertaining to facial recognition. Note that this will predominantly NOT be
including deep learning techniques.

6.1 Intro to Facial Detection and Recognition

Recall that facial detection and recognition although used interchangeably in non-technical set-
tings, are very different:

• Facial Detection - facial detection is the idea of finding where a face is located in an
image. This is very similar to what you might see in a camera which highlights “boxes”
on the face.

• Facial Recognition - facial recognition is identifying a face and either labelling it with a
database with different photos or computing whether it matches one particular photo.

Here are some famous applications for facial detection (not facial recognition):

• Mobile Cameras - since mobile cameras do not have the same parameters that a DSLR
camera might have (ISO, Shutter Speed, and f-Stop), mobile cameras will often detect
where faces are in order to adjust the parameters automatically so that faces are in focus
and appear their absolute best.

• Facial Recognition - particularly important for surveillance and biometrics. This will
be discussed later with many practical applications of facial recognition algorithms.

• Searching + Miscellaneous Use - it’s very common you want to either search through
different images to find “faces” or things that match with “faces” (think for example
searching on google), or analyzing certain attributes of peoples faces (such as age, gender,
race, etc...) for certain tasks.
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6.2 Haar Features for Facial Detection

I have a section on the Discrete Haar Transform which talks about using Haar Filters for com-
pression by creating corresponding low-pass and high-pass filters. I’ll re-explain a part of this
by revisiting how Haar Features are constructed:

1. Haar Wavelets - these are wavelet functions which look sort of like square functions - 0
everywhere but a domain of x to y - for half of the domain of x to y the wavelet is positive
1 and the other half, it is −1. It is worth noting that sometimes these values are actually
divided by

√
2 in order to normalize the total integral of the function to be 1.

2. Haar Filter - from these wavelets, we can develop a filter which basically is the same
as applying a convolution with various different Haar Wavelets at different “depths” or
“levels”. Read more in the Discrete Haar Transform section to get a better idea.

3. Haar Features - now, we basically take the 1 dimensional Haar constructions from above
which are wavelets, and apply them in two dimensions. We take the resulting different
2-dimensional filters and convolve them with the surrounding region of every pixel. We
normally tend to pick certain versions of these that help us distinguish for faces (or for
different objects in other cases), and call the features that we select, the Haar Features. It
looks like rectangular boxes of black and white for the most part.

Some important things to know about Haar features are that they are a single vector containing
several different numbers. Recall that the Discrete Haar Transform returns vectors of vectors
(tensors) because it is computing the filters over and over – in this case, we aren’t doing this
so we get a vector composed of scalars which is the result of performing convolution with the
Haar 2-dimensional filters. At certain points, these filters actually closely resemble many of the
derivative-based filters we used prior such as the gradient x-direction filter, the gradient
y-direction filter, and the Laplacian/2nd derivative filter.

You might be wondering how these Haar filters are particularly helpful. The reason is because
it is identifying some of the symmetries only prevalent in faces and not many other objects:

• Many faces are symmetric across the horizontal axis, so a Haar Filter which exploits that
could be used for face detection.

• Many faces, however, are NOT symmetric across the horizontal axis. A Haar Filter which
exploits that could also be used for face detection because it can tell us that something
isn’t a face.

• Note that things get a LOT more complicated with also identifying other features (for
example eye-color being darker than skin-color, or eyebrows being darker than teeth, etc).

In general, the Haar features let us exploit certain symmetries that really are only prevalent in
faces and not many other objects. This is also partially why the Haar-feature system won’t work
for faces that are tilted, or for faces that are occluded.

6.3 Integral Images

A huge concern with facial recognition is efficiency. We want the algo to be efficient because face
detection, particularly for many of the applications I mentioned, requires VERY fast processing
time. Since Haar features are like “blankets” (similar to convolution kernels) where we try and
sum the pixels of certain areas and subtract the sum of pixels in different areas (the way the
Haar wavelet function convolved sums something over a given region and subtracts something
over a given region), we want to have a construction which takes advantage of this.
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Here is where we use the integral image which is essentially a reconstruction of the image
where each “value” is represented by the sum of pixels above and to the left of the pixel. You
can read more about this in Shree K Nayar’s video series since it goes more into depth about
how this is calculated, but using the integral image makes it so that computing the sums over
large swaths of the image reduces to a constant time problem instead (constant number of sums
since we already have the sums in given locations). This makes it significantly easier to compute
the Haar features and construct the vector significantly faster.

NOTE: taking an image and turning it into this “sum of previous parts” is actually an O(n)
operation which is relatively straightforward to do in a raster-method. Watch the video to learn
more about its practical implementation.

6.4 Nearest Neighbor Classifier and Support Vector Machines

The Nearest-Neighbor-Classifier is a paradigm for classifying feature vectors. Given some type
of vector space where we plot the feature vectors, the nearest neighbor classifier will find
the closest vector in terms of Euclidean distance to the initial vector. This means that we take
the vector, find the nearest vector that is already labelled/classified, and we assign the vector
to that vector’s classification.

You might note that this is very redundant – why do we have to compute the nearest vec-
tor? We can introduce the notion of decision boundaries which are, usually, surfaces in the
vector space (note that they can and usually are of very high dimensions). If a feature is on one
side of the surface, then it is classified as a face, while if the feature is on the other, it is classified
as NOT a face. We construct such (linear) surfaces using Support Vector Machines. A key
assumption to note for this, is that the surface for faces vs non-faces is almost always going to
be linear, and so we can use support vector machines freely.

I will omit much of the math here since I think it’s not particularly helpful. The goal is to
optimize a plane to separate two separate “sets” of points. We do this by trying to find all
possible hyperplanes (higher dimensional planes) that meet the criteria of separating the points,
and then computing the largest margin. The margin is the largest n-th dimensional rectangular
prism you can make by slowly extending the separating hyperplane outward. We want to pick
the hyperplane with the largest margin, so that way it is the most “accurate” (basically, it is
the surface that evenly splits the barriers of the two sets of points).

If interested, search up a visual depiction of Support Vector Machines and their associated Mar-
gins in order to further understand how they are defined.

6.5 Viola-Jones Facial Detection Algorithm

The Viola-Jones algorithm is by far the most famous and widely used algorithm for detecting
faces in some type of image. This is especially shocking given that it doesn’t use any deep
learning techniques. It uses some of the things mentioned above, but let’s thoroughly outline
the algorithm here:

1. Integral Image Calculator - this is the exact same as what was mentioned earlier – we
want to calculate the integral image in order to make the Haar-features easier to compute.

2. Haar-like Feature Extraction - we want to extract Haar features as mentioned earlier
because they are extremely efficient at finding features/attributes of faces.
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3. Feature-Selection - this is the process of selecting features from the image – this is
typically done with a machine learning approach.

4. AdaBoost - most of the Haar features are considered “weak classifiers” because they
aren’t (on their own) good enough to classify faces versus non-faces. Thus, we also use
adaboost in order to take some of the weak classifiers and combine them (through using
machine learning again) to create even strong classifiers.

5. Cascade of Classifiers - We order the features based on how “strong” they all are
combined that way we can apply them continuously and allow for early rejection – that
is, denoting the non-faces as legitimately NOT faces very early on.

6. Thresholding - in most machine learning models, the output is a probability that some-
thing will happen thus we threshold the probability to decide if it’s “likely enough” that
the object at hand is a face.

Obviously the algorithm is important to understand, but the main very important thing which
the Viola-Jones algorithm introduced to the world is the idea of boosting through the AdaBoost
system. It is widely used in computer vision and machine learning as a technique (which I won’t
explain) that can combine many weak classifiers into a strong single one.

6.6 Eigenfaces Algorithm and Deep Learning for Facial Recognition

This is, a very brief overview of the above techniques for facial recognition. Note that I don’t go
in depth because these techniques are mostly related to deep learning and things of that nature
– it is less of a computer vision task and more of a deep learning task to check if two faces
are the same and to analyze what features make faces the same. Note that pretty much both
methods first require that facial detection algorithms are run first to figure out where the faces
are located.

• Eigenfaces - the broad logic of this method is to use singular value decomposition, eigen-
value/spectral decomposition, and principal components analysis in order to compute the
main components of an image vector. We typically represent an image (the part of an im-
age with a face in it) as a high dimensional vector (tensor rather) of dimension N and M
– NxM vector. By doing this, we find the components that capture the highest variation
in the image, and use those to determine future images.

• Deep Learning - many deep learning techniques for facial recognition exist and to learn
more about them, you can read the Szeliski textbook on Computer Vision. One famous
version of this is DeepFace which is a facial recognition software developed by Facebook
researchers. It uses frontalization in order to make a face “face” forward. The endgoal
is to make sure that the image is cropped and facing forward. Then, it uses various
deep learning methods in order to analyze the image and determine some characteristics
about the face to match which it matches to a vector embedding – this is a vector-
representation of the image (this same term is used in NLP for a vector representation of a
word). Furthermore, we develop a similarity metric which takes the two vectors containing
important features about the face, and use the similarity metric to determine how likely
it is that the two faces are the same.

Broadly speaking, the issue of facial recognition is extremely challenging and there exist many
deep learning based algorithms to do it. If you understand how Convolutional Neural Networks
function, and the ideas of supervised learning, pooling, activation functions, loss functions, and
backpropagation (sort of the basic building blocks of multilayer perceptron neural networks and
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deep learning), then read about DeepFace online to understand more about how it is used and
the detailed workings of how it works.

7 Deep Learning Techniques

This section is going to a huge deep dive in deep learning techniques. Many of other techniques
such as Nearest-Neighbor Classifiers and things like that have been mentioned earlier, so I
will simply start out with things I’m assuming you guys to know. The vast majority of this
chapter will be focussed on things like Convolutional Neural Networks and other computer-
vision focussed deep learning tasks. A lot of this will be based on “Computer Vision using Deep
Learning” by Vaibhav Verdan.

7.1 Convolution, Pooling, and Activation

This section is going to talk about convolution, pooling, and activation functions that are com-
monly used in CNNs.

• Convolution - convolution, as mentioned before, is the idea of taking a kernel and sliding
it over some type of region to get some information – it is often used in many gradient-
based filters, and is used as a way to extract different features which can then be plugged
inside the model.

• Pooling - pooling, also mentioned earlier, is the idea of agglomerating certain regions of
an image into one single value to make it easier to process in a neural network.

• Activation - these typically involve ReLU (Rectified Linear Units) which will basically
make all negative values 0 and retains all positive values to be the same.

Note that all of these together tend to form the typical Convolutional Neural Network (CNN)
which we use today for a lot of image prediction techniques and things of the sort. However, we
can also progress further and discuss other specific network architectures.

7.2 LeNet Architecture

This is a specific type of architecture of a convolutional neural network used explicitly in image
processing and computer vision developed back in the 1980s timeframe. It was tailored for the
MNIST database (so understanding and detecting handwritten digits) – more importantly, it
was also designed to be easily used on a CPU (instead of needing some dedicated other GPU
hardware for it to work). This was designed back when max-pooling wasn’t a concept so average-
pooling was used instead. I will first explain the LeNET type 4 architecture and explain what
the steps are and briefly explain about some differences between this architecture and some
others and why one would pick one over the other:

1. Input Layer - normally a 32 by 32 input image

2. Convolutional Layer - four 24x24 convolution layer

3. Pooling Layer - normally an average pooling layer (could also be max if you wanted that
instead)

4. Convolutional Layer - 16 12x12 convolution layer

5. Pooling Layer - average pooling layers run twice
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6. Output Layer - the display tensor reflects certain characteristics based on the image
input

The above loosely describes the LeNet 4 Architecture. But, we also have the LeNet 5
Architecture as well which adds more convolutional layers, more types of pooling layers, and
differing types of activation functions. Overall, it is the more widely used between the two and is
the one made more recently. We also have the idea of a Boosted LeNet Architecture which
is typically applied to LeNet 4, but works with pretty much anything. This is very similar to
the Adaboost technology found in the Viola-Jones facial detection algorithm – it will find and
compute the weak classifiers and combine them to make them a stronger predictor of whatever
the model is trying to predict.

7.3 AlexNet and VGG Neural Networks

These are some other models popularly used in the field of computer vision with more compli-
cated images and designs. The architecture uses a series of convolutions, max-poolings (instead
of average-poolings found in the previous section on LeNet architecture), and various fully con-
nected layers equipped with the RELU activation function to add nonlinearity. Dropout layers
and data augmentation was used in order to fight overfitting in the network.

Another extremely famous set of neural networks used for computer vision is the VGG – VGG16
and VGG19 are the two main types:

• VGG16 - this is the simpler version of the VGG neural network and includes 3x3 convolu-
tion layers and 2x2 pooling layers throughout the network. It’s often used as a benchmark
for many image-classification algorithms for particular use-cases to see if it is “better” than
the average deep-learning model.

– Contains 16 layers

– Size in terms of FC layers is 533mb

– Lighter model

– Preferred for smaller datasets

• VGG19 - this is the same thing as above but significantly more stricter it is due to the
fact that in the general business world

– Contains 19 layers

– Size in terms of FC layers is 574MB

– Larger and deeper network

– Can be used for richer categories as high as 1000 classes

Broadly speaking, the order in which these were introduced (AlexNet, VGG16, VGG19), are
the order in which they were created, and the order in least deep and accurate to most deep
and accurate. The tradeoff is computational power and memory. That is why the industrial
standard has pretty much stuck with VGG16!

7.4 Deep Learning for Object Detection - RCNN & YOLO

To introduce this idea, we can first introduce the notions of moving and bounded boxes – both
of these are done by taking boxes and trying to do different types of manipulations to find the
object at hand.
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Let’s define some of the main deep learning approaches used for this task:

• Region-based CNN (RCNN) - do not confuse this with Recurrent Convolutional
Neural Networks – this is based on the idea of taking different regions of an image, and
computing the CNN features of them (by using convolution). We then classify the regions
by passing the features into a support vector machine to clarify the presence of objects
(specific objects) in the region proposed.

• Fast RCNN - this is the same approach as above, but computationally optimized to
make it faster. The architecture is very similar but takes the different regions and applies
pooling in order to make sure that there are less regions to process (and smaller regions
to process).

There are some other types of Region Based Neural Networks as well including the Faster
RCNN as well, but I won’t mention those for sake of simplicity. One of the most famous object
detection algorithms also used today is YOLO - You Only Look Once - the process works
the following way:

1. YOLO divides the input image into an SxS grid - each grid is responsible for predicting
only one object so if the center of an object falls in a grid cell, that grid cell is “responsible”
for detecting the object.

2. For each of the grid cells, it predicts boundary boxes based on various attributes, and it
gives a score (to reflect how likely it is that an object is inside the box).

3. The confidence/score is defined as Probability(object) times IoU (Intersection of Unions).

4. Each grid cell predicts C conditional class probabilities - Pr(Classi — Object). These
probabilities are conditioned on the grid cell containing an object. we only predict one set
of class probabilities per grid cell, regardless of the number of boxes B.

5. We multiply conditional class probabilities and individual class predictions to be even more
certain that an object is located in the box.

Basically, YOLO is trying to create multiple “bounding boxes” of each object within a cell – to
calculate the loss, YOLO optimizes for sum-squared error in the output in the model as sum-
squared error is generally easy to optimize.

Broadly speaking, YOLO looks at the image only once but in a clever manner, it is just trying
to divide the image into boxes and use different loss functions and attributes to determine if the
object is located and where the boundary of the object is located. Importantly, here are some
things to note about YOLO which is what makes it a very common industrial standard:

• YOLO is very fast

• YOLO is very simple to use as well

• YOLO also reasons globally about the image when making predictions instead of other
region-based techniques because YOLO combines everything together at the end.

• YOLO, because it uses a combination of the different boxes, learns a lot of generalizable in-
formation about the representation of certain objects instead of region-based convolutional
neural networks which don’t necessarily do the same thing.

Another really new but important object detection algorithm is the Single Shot MultiBox
Detector (SSD) which overcomes slowness in networks to work in real-time object detection
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by taking the VGG16 architecture but modifying it in order for a single shot to be required to
detect multiple images in an object.
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